

Journal Pre-proof

Optimizing Outcomes in Redo Hypospadias Repair: The Impact of Perioperative Hyperbaric Oxygen Therapy on Tissue Healing

Diego R. Álvarez Vega, B.S., Jordan L. Mendelson, MD, Jordan S. Gitlin, MD, Alan Katz, MD, Ashraf F. Gamal, MD, Katharine Hodgen, MD, Moneer K. Hanna, MD, FRCS

PII: S1477-5131(25)00577-7

DOI: <https://doi.org/10.1016/j.jpurol.2025.10.014>

Reference: JPUROL 5648

To appear in: *Journal of Pediatric Urology*

Received Date: 15 March 2025

Revised Date: 12 October 2025

Accepted Date: 22 October 2025

Please cite this article as: Álvarez Vega DR, Mendelson JL, Gitlin JS, Katz A, Gamal AF, Hodgen K, Hanna MK, Optimizing Outcomes in Redo Hypospadias Repair: The Impact of Perioperative Hyperbaric Oxygen Therapy on Tissue Healing, *Journal of Pediatric Urology*, <https://doi.org/10.1016/j.jpurol.2025.10.014>.

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Original Research Article

Optimizing Outcomes in Redo Hypospadias Repair: The Impact of Perioperative Hyperbaric Oxygen Therapy on Tissue Healing

Diego R. Álvarez Vega, B.S.¹; Jordan L. Mendelson, MD²; Jordan S. Gitlin, MD²; Alan Katz, MD³; Ashraf F. Gamal, MD⁴; Katharine Hodgen, MD²; Moneer K. Hanna, MD, FRCS⁵

Affiliations:

1. NYU Grossman Long Island School of Medicine, NYU Langone Hospital – Long Island; Mineola, NY
2. Department of Urology, NYU Langone Hospital – Long Island; Mineola, NY
3. Hyperbaric Medical Solutions; Woodbury, NY
4. Military Family Hospital; Cairo, Egypt
5. Department of Urology, New York Presbyterian Weill-Cornell; New York, NY

Corresponding Author

Diego R. Álvarez Vega, B.S.

Mailing Address: 260 1st St Apt D6, Mineola, NY 11501

Email Address: diego.alvarezvega@nyulangone.org

Abstract

2 **Introduction:** Redo hypospadias repairs present significant challenges due to tissue scarring and
3 hypovascularity, substantially increasing the risk of complications. Previous literature document
4 complication rates above 40% after three or more previous urethroplasties, highlighting the need
5 for strategies that enhance tissue quality. Postoperative hyperbaric oxygen therapy (HBOT) can
6 improve healing outcomes. However, the role of perioperative HBOT in enhancing tissue quality
7 through neovascularization remains unclear. This study aims to evaluate whether perioperative
8 HBOT (both pre- and postoperative) instead of the senior author's standard of care (SOC) topical
9 nitroglycerin reduces complication rates and improves surgical outcomes in redo hypospadias
10 repair.

11 **Methods:** We retrospectively reviewed 47 patients (aged 3 – 18 years) who underwent redo
12 hypospadias repairs between January 2019 and January 2022, following 2-4 prior failed
13 procedures. Inclusion criteria included patients with failed primary repairs, while exclusion
14 criteria included patients with contraindications to HBOT or incomplete follow-up data. Patients
15 were allocated to treatment groups (i.e. perioperative HBOT v. SOC) based on insurance
16 coverage for HBOT rather than randomization. Group 1 (n=31) received perioperative HBOT
17 while Group 2 (n=16) received SOC, consisting of topical nitroglycerin ointment. Additionally,
18 BMG patients in both groups received topical vitamin E for 2-3 weeks post-operatively. HBOT
19 protocol consisted of 20 preoperative sessions and 5-10 postoperative sessions at 2.0 ATA.

20 **Results:** The two groups did not differ significantly in hypospadias locations (Group 1: 22 distal,
21 9 proximal; Group 2: 10 distal, 6 proximal; $P=0.795$) or operative technique (Group 1: 21 one-
22 stage dorsal inlay grafts [DIG], 10 staged buccal mucosa grafts [BMG]; Group 2: 10 one-stage
23 DIG, 6 staged BMG; $P=0.972$). The HBOT group demonstrated a reduction in postoperative

24 complications compared to SOC group (6.4% vs. 25%; P=0.179 95% CI 0.05-1.26), though this
25 difference did not reach the level of statistical significance. Specifically, the HBOT group
26 experienced only two cases of fistula formation, while the SOC group had four total
27 complications: one case of graft contracture and three fistulas. All complications were
28 successfully corrected surgically one year postoperatively using the perioperative HBOT
29 protocol. Subjective clinical assessment also suggested improved tissue quality and pliability in
30 HBOT-treated patients.

31 **Conclusions:** This study suggests that perioperative HBOT was associated with a lower, but not
32 statistically significant, complication rate in redo hypospadias repairs. The findings support the
33 potential use of perioperative HBOT in promoting tissue healing and justify further investigation
34 through prospective randomized controlled trials to establish definitive efficacy and optimize
35 treatment protocols for this challenging patient population.

36

37 **Keywords:** Repeat Hypospadias repair, hyperbaric oxygen therapy, tissue preconditioning,
38 reconstructive urology

39

Introduction

40 Redo hypospadias surgeries represent one of the most challenging scenarios in pediatric
41 reconstructive urology. These cases are characterized by the compromised structural and
42 functional integrity of penile tissues following previous failed repairs. Each subsequent operation
43 often results in increased scar tissue formation, diminished tissue elasticity, and a progressively
44 hypovascular wound bed. The cumulative effects of these changes create conditions that are
45 fundamentally unfavorable for successful surgical repair and optimal wound healing.

46 The pathophysiologic changes in previously operated hypospadias cases contribute
47 substantially to elevated complication rates. Re-operative urethroplasty after failed hypospadias
48 repair demonstrates a dramatic escalation in complication rates with each successive operation.
49 While primary distal and proximal repairs show 12% complication rate, re-operative procedures
50 demonstrate significantly higher failure rates: 32% for repeat tubularized incised plate (TIP)
51 repairs, 35% for inlay repairs, and 40% for two-stage repairs. Most critically, logistic regression
52 analysis reveals that each prior surgery increases the odds of subsequent complications 1.5-fold,
53 with complications rates reaching 40% in patients who have undergone three or more prior
54 operations.¹ The most common complications—urethrocutaneous fistulas, graft shrinkage,
55 strictures, and wound dehiscence—are directly related to the impaired healing capacity of
56 scarred, ischemic tissues.^{2,3, 4, 5} These high failure rates underscore that compromised tissue
57 quality and inadequate wound healing are critical determinants of poor outcomes in repeat
58 repairs.

59 Hyperbaric oxygen therapy (HBOT) represents a potential adjunctive intervention to
60 address the underlying pathophysiologic mechanisms in these cases. HBOT involves the
61 administration of 100% oxygen at pressures greater than atmospheric pressure, typically 2.0-2.4

62 atmospheres absolute (ATA).⁶ This approach markedly increases the dissolved oxygen content in
63 blood plasma, enhancing oxygen delivery to tissues independent of hemoglobin-bound oxygen.
64 The biological effects of HBOT include stimulation of angiogenesis, reduction of tissue edema,
65 enhancement of fibroblast proliferation, and augmentation of collagen synthesis—all critical
66 elements for improved wound strength and healing.^{7,8}

67 In related fields such as plastic surgery, perioperative HBOT has demonstrated efficacy
68 in reducing postoperative complications, enhancing graft take, and improving overall wound
69 healing outcomes.⁷ This report by Friedman et al. demonstrated that preconditioning HBOT
70 reduced post-abdominoplasty complications in a large series of patients.⁷ Furthermore, the senior
71 author's prior experience in severely scarred and re-operative epispadias and bladder exstrophy
72 contributed to his conviction that preconditioning HBOT rejuvenated the hypovascular tissues.⁵
73 Application of this rationale to hypospadias repair suggests that perioperative HBOT could
74 potentially reduce complication rates by optimizing tissue vascularity and regenerative capacity
75 prior to surgical intervention. Additionally, post-operative HBOT may also support healing
76 processes through enhanced tissue oxygenation and cellular repair mechanisms. Given that
77 compromised vascularity appears to be a fundamental mechanism underlying the exponentially
78 increasing failure rates in redo cases, interventions specifically targeting tissue perfusion and
79 oxygenation represent a logical therapeutic approach.

80 We hypothesized that a perioperative HBTO regimen (encompassing both pre-operative
81 and post-operative HBOT) would reduce complication rates in redo hypospadias repairs by
82 promoting neovascularization in scarred tissues and enhancing overall wound healing capacity.
83 This study aims to evaluate whether perioperative HBOT instead of SOC reduces complication
84 rates and improves surgical outcomes in redo hypospadias repairs.

85

Methods

86 This investigation represents a retrospective cohort study of patients treated in the senior
87 author's private practice. These patients were referred to him as a private practicing surgeon and
88 the hospital location, where he had surgical privileges, was chosen by him and determined by the
89 patient's address and his surgical schedule. The study received Institutional Review Board
90 approval (IRB #17-53), and the IRB approved a waiver of informed consent for analysis of de-
91 identified data. The study compares outcomes in patients who underwent redo hypospadias
92 repairs with perioperative HBOT versus standard of care.

93 We conducted a systematic retrospective review of all patients who underwent redo
94 hypospadias repairs by a single senior pediatric urologist between January 2019 and January
95 2022. Inclusion criteria encompassed: (1) age 3-18 years, (2) history of 2+ prior failed
96 hypospadias repairs, (3) at least four months follow-up post-operatively. Exclusion criteria
97 included patients with either contraindications to HBOT, incomplete follow-up data, or minor
98 revisions such as skin chordee, small fistulas, or minor revisions.

99 The cohort was divided into two groups based on insurance coverage for HBOT, as
100 HBOT was not covered by certain insurance plans during the study period. Of note, all patients
101 were offered HBOT and informed about the implications of HBOT, nonetheless insurance plan
102 coverage was the final determinant. No clinical factors beyond insurance coverage such as
103 degree of scarring, number of prior surgeries, or tissue quality were used for group allocation.

104 Patients in the HBOT group received a standardized hyperbaric oxygen treatment
105 protocol consisting of 20 preoperative sessions and 5 to 10 postoperative sessions, administered
106 at 2.0 ATA of 100% oxygen for 90 minutes, with 5-minute air breaks every 20 minutes to reduce
107 the risk of oxygen toxicity. The variation in postoperative sessions (5-10) was due to two patients

108 who were not able to complete 10 postoperative sessions because they moved away from the
109 center and were unable to continue. Sessions were conducted in a hyperbaric chamber under
110 direct medical supervision. The protocol of 20 preoperative HBOT sessions was established
111 based on the senior author's prior clinical experience with similarly complex re-operative cases
112 in bladder exstrophy patients, which demonstrated favorable outcomes with this regimen as no
113 major postoperative complications were seen in the cohort.⁵

114 All procedures were performed using standardized techniques appropriate for the specific
115 anatomical presentation. Dorsal inlay graft (DIG) repair was utilized for patients with adequate
116 urethral plate tissue and moderate ventral curvature, while staged buccal mucosa graft (BMG)
117 reconstruction was reserved for cases with severe scarring, inadequate urethral plate, or
118 significant ventral curvature requiring two-stage reconstruction.⁹ The choice between techniques
119 was based on preoperative and intraoperative assessment of tissue quality, degree of curvature
120 (>30 degrees favoring staged approach), and extent of previous.

121 The SOC group received 2% nitroglycerine ointment application to the penis at the
122 conclusion of surgery (integrated into the tie-over dressing for staged BMG cases or under
123 gauze/Tegaderm for one-stage DIG cases). The rationale and choice of using nitroglycerin as a
124 vasodilator is based on prior studies demonstrating its efficacy in improving tissue perfusion and
125 reducing flap necrosis.^{10, 11} For one-stage DIG SOC patients, parents applied nitroglycerin every
126 8 hours for 2-3 days after dressing removal. The HBOT group did not receive nitroglycerin
127 ointment in the operating room or at home, as the HBOT was considered the primary
128 vasodilatory intervention.

129 For patients who underwent repair with BMG in both groups (HBOT and SOC), topical
130 vitamin E was applied to the graft three times daily for 2-3 weeks post-operatively to promote

131 optimal wound healing and graft pliability. For staged repairs in both groups, graft stretching was
132 performed during the interval period between stages to optimize graft pliability and dimensions.
133 All surgical procedures were performed by the senior author with extensive experience managing
134 complex urologic cases, including redo hypospadias repair. Standard perioperative antibiotic
135 prophylaxis consisting of cefazolin was administered to all patients.

136 Data were collected on patient demographics, location of hypospadias (distal or
137 proximal), operative technique, number of prior surgeries, and complications. Of note,
138 classification of distal v. proximal location was determined by original meatal location, with
139 distal cases defined as coronal, sub-coronal, or distal penile, and proximal cases defined as mid-
140 shaft, proximal penile, penoscrotal, or scrotal locations. The primary outcome measures included
141 overall complication rates and specific complications, particularly fistula formation and graft
142 contracture. Secondary outcomes included subjective assessment of tissue quality by the treating
143 surgeon. Statistical analysis was performed using IBM SPSS Statistics and categorical variables
144 were analyzed using chi-square or Fisher's exact test. Continuous variables were compared using
145 t-test or Mann-Whitney U test depending on distribution normality. Results were considered
146 statistically significant at $p < 0.05$.

147 Representative photographic documentation was obtained as part of routine clinical care
148 and de-identified for analysis; use of these images was approved under the IRB waiver.

149

Results

150 Our search methodology yielded a final study population of 47 patients who met all
151 inclusion criteria during the study period with 31 patients receiving HBOT based on insurance
152 coverage, while 16 patients received SOC with nitroglycerin. The two groups did not differ
153 significantly in terms of hypospadias locations (HBOT: 22 distal, 9 proximal; SOC: 10 distal, 6
154 proximal; $P=0.795$) or operative technique (Group 1: 21 one-stage dorsal inlay grafts [DIG], 10
155 staged buccal mucosa grafts [BMG]; Group 2: 10 one-stage DIG, 6 staged BMG; $P=0.972$).
156 Table 1 summarizes the baseline characteristics and outcomes for both study groups. Patient
157 demographics and clinical characteristics were comparable between the two groups. Also, patient
158 follow-up ranged from 4 months to 3 years; the median follow-up was 12 months. All patients
159 had ≥ 4 months of follow-up per inclusion criteria.

160 The HBOT group experienced a total of two cases of fistula formation (6.4%), while the
161 SOC group had four total complications: three cases of fistula formation and one case of graft
162 contracture (25% total complication rate), as illustrated in Figure 1 ($p = 0.179$, 95% CI 0.05-
163 1.26). All complications were successfully corrected surgically one year postoperative using the
164 same perioperative HBOT protocol (20 preoperative and 5-10 postoperative sessions) as
165 employed in the initial intervention. The two patients from the HBOT group, as well as the four
166 patients from the SOC group, who experienced these complications had the perioperative HBOT
167 protocol incorporated into the treatment plan for addressing the complications. Notably, patients
168 who experienced initial complications and underwent revision surgery with HBOT demonstrated
169 successful healing without any further complications during the follow-up period.

170 A representative case illustrating the clinical benefits of perioperative HBOT is presented
171 in Figure 2. This case involved a patient with severe penile scarring following three major prior

172 surgical procedures: dermal graft, urethroplasty, and meatotomy. Pre-operative imaging
173 demonstrated extensive scarring and tissue compromise (Figure 2A). Following 20 preoperative
174 HBOT sessions, marked improvement in tissue quality and pliability was observed (Figure 2B),
175 facilitating subsequent surgical intervention. The surgical procedure involved excision of scar
176 tissue and replacement of corporal wall with dermal graft (Figure 2C), with early healing noted
177 at 10 days post-operatively (Figure 2D). At 3 months post-operatively from the first stage, tissue
178 quality remained optimal (Figure 2E), allowing for successful second-stage surgery involving
179 proximal Duplay urethroplasty and distal inlay graft (Figure 2F-G).¹² Final post-operative results
180 demonstrated good functional and cosmetic outcomes (Figure 2H).

181 Subjective evaluation of tissue quality and healing was performed by both the senior
182 pediatric urologist and patients' parents throughout the treatment course. This assessment, while
183 clinically valuable, represents observational data without standardized measurement tools or
184 blinded evaluation, which must be acknowledged as a limitation. Parents of patients in the
185 HBOT group consistently reported notable improvement in tissue pliability following the 20
186 preoperative HBOT sessions. Additionally, the treating pediatric urologist documented that
187 tissues in HBOT-treated patients appeared markedly softer with enhanced overall wound healing
188 quality compared to those in the SOC group. No significant adverse events related to HBOT
189 were observed during the study. No cases of oxygen toxicity, pneumothorax, or claustrophobia
190 requiring treatment discontinuation were documented.

191 When outcomes are analyzed by hypospadias location, distal cases in HBOT group
192 (n=22) had a 4.5% complication rate (1 fistula) compared to 20% in SOC group distal cases
193 (n=10, 2 fistulas). For proximal cases, HBOT group (n=9) had an 11.1 complication rate (1
194 fistula) compared to 33.3% in SOC group (n=6, 1 graft contracture and 1 fistula). While these

195 trends favor the HBOT group in both subgroups, the small numbers preclude meaningful
196 statistical analysis.

197

Journal Pre-proof

198

Discussion

199 The management of redo hypospadias repairs remains one of the most challenging
200 scenarios in pediatric reconstructive urology. The cumulative effects of multiple failed
201 operations—including tissue scarring, reduced elasticity, and compromised vascularity—create
202 conditions that significantly increase the risk of complications and surgical failure. Our study
203 suggests that combined pre- and post-operative HBOT may improve outcomes in these
204 challenging cases by addressing the fundamental pathophysiologic deficits of scarred,
205 hypovascular tissues.

206 The observed reduction in complication rates in Group 1 (6.4% vs. 25%) represents a
207 lower rate, though it did not reach statistical significance ($P=0.179$, 95% CI 0.05-1.26) due to the
208 small sample size and low absolute number of complications, as seen in Figure 1. However, this
209 finding aligns with prior studies suggesting that HBOT can reduce failure rates in complex
210 reconstructive procedures.^{8,13} Notably, our data revealed a trend toward decreased
211 urethrocutaneous fistula formation, which represents one of the most common complications in
212 hypospadias repair.³ Regarding the patients who experienced complications and required further
213 surgical revision, regardless of initial group allocation, all patients from both the HBOT and
214 SOC groups who experience complications were successfully treated using the same
215 perioperative HBOT protocol as the HBOT group. These patients demonstrated similar
216 subjective tissue quality improvements during their revision surgeries and no complications
217 related to HBOT therapy were observed in our cohort.

218 The lack of statistical significance demonstrated herein should not overshadow the
219 potential clinical importance of these findings. A post-hoc power analysis demonstrated that 120
220 total patients would be required to demonstrate statistical significance given the observed effect

221 size, which only further highlights the need for larger, multicenter studies to definitively
222 establish the efficacy of this HBOT protocol in this patient population.

223 Several limitations must be acknowledged that could influence the interpretation of our
224 results. The retrospective nature of this study introduces potential selection bias, as patient
225 allocation was determined by insurance coverage rather than clinical factors, which could result
226 in the two treatment groups representing different socioeconomic demographics with potentially
227 different baseline health characteristics, adherence patterns, or access to care. This non-
228 randomized allocation potentially limits both the ability to draw causal inferences from the
229 observed associations and the study's external validity. Additionally, the two treatment groups
230 differed in their adjunctive interventions: SOC patients received nitroglycerin ointment, while
231 HBOT patients received HBOT without this specific adjunct therapy; meanwhile, patients in
232 both groups who underwent graft placement received topical vitamin E treatment. Although
233 there was heterogeneity in treatment protocols across patients: HBOT alone or HBOT and
234 vitamin E for graft patients in the HBOT group versus nitroglycerin alone or nitroglycerin and
235 vitamin E for graft patients in the SOC group; one can still compare both groups to evaluate the
236 role of HBOT as a vasodilatory treatment versus nitroglycerin.

237 The inclusion of both distal and proximal cases represents another potential confounding
238 factor. Proximal hypospadias repairs are inherently more complex with higher baseline
239 complication rates regardless of intervention. HBOT group had a higher number of proximal
240 cases (9/31 vs. 6/16), which typically have higher complications rates, yet still demonstrated
241 better outcomes. Furthermore, there was no statistically significant difference between the
242 HBOT and SOC group regarding hypospadias location ($p = 0.795$), thus the potential impact of

243 this “limitation” would be limited. Nonetheless, future studies should stratify outcomes by
244 complexity and anatomical location of hypospadias to better understand the benefits of HBOT.

245 The subjective assessment of tissue quality outlined herein by both the treating surgeon
246 and parents, while potentially clinically valuable, lacks objective validation and standardization.
247 In fact, multiple studies have shown that clinical assessment of tissue characteristics, even by
248 experienced surgeons, can be limited when compared to objective standards.¹⁴ Future studies
249 should incorporate standardized, blinded assessment of tissue quality protocols and potentially
250 even histological analysis to provide more robust, definitive evidence of tissue quality
251 improvements.

252 Previous studies have shown that postoperative HBOT can improve healing outcomes in
253 various surgical settings. However, the role of preoperative HBOT in enhancing tissue quality
254 through neovascularization remains in question, particularly in the context of redo hypospadias
255 repairs. The concept of tissue preconditioning through preoperative HBOT is compelling, as it
256 may stimulate neovascularization in scarred tissue before surgical intervention.¹³ By enriching
257 the wound bed with new capillaries and increased oxygen tension, HBOT potentially improves
258 oxygen supply during the critical early phases of healing, which may create a more favorable
259 environment for successful repair. This hypothesis is supported by recent findings in similar
260 clinical contexts, such as complex repeat surgeries for bladder exstrophy and epispadias, where
261 preconditioning HBOT significantly reduced postoperative complications and improved wound
262 healing outcomes.⁵

263 The biological mechanisms underlying these potential improved outcomes are
264 multifaceted. HBOT is known to enhance tissue oxygenation, stimulate angiogenesis, promote
265 fibroblast proliferation, and enhance collagen synthesis.⁴ Furthermore, hyperbaric conditions

266 stimulate growth factors and cytokines critical for tissue repair while simultaneously attenuating
267 inflammatory responses. Additionally, the preoperative application of HBOT may promote
268 neovascularization in scarred tissue, creating a more favorable environment for surgical
269 reconstruction and graft take.

270 The case presented in Figure 2 provides compelling visual evidence supporting the
271 clinical utility of perioperative HBOT in complex redo hypospadias cases. The dramatic
272 improvement in tissue quality observed between pre-treatment (Figure 2A) and post-HBOT
273 conditioning (Figure 2B) demonstrates the potential for HBOT to reverse some of the
274 pathophysiologic changes associated with repeated surgical trauma. The successful completion
275 of multi-stage reconstruction in this severely compromised case, with good intermediate and
276 final outcomes, supports the hypothesis that HBOT-mediated neovascularization can create
277 conditions more favorable for complex reconstructive procedures. This case also illustrates the
278 practical application of our HBOT protocol in the most challenging clinical scenarios, where
279 conventional approaches might be expected to have higher failure rates.

280 The integration of HBOT into the surgical workflow presents logistical challenges,
281 including the need for specialized equipment, trained personnel, and significant time
282 commitment from patients and families. The economic impact of HBOT must also be
283 considered, as the upfront costs are substantial. However, if HBOT reduces reoperation rates and
284 overall healthcare utilization, the long-term cost-effectiveness profile may be favorable. A
285 formal cost-utility analysis would be valuable to quantify the economic implications
286 comprehensively.

287 Future research directions should include prospective, multicenter randomized controlled
288 trials comparing standard care with and without HBOT while stratifying patients by the severity

289 of tissue compromise, anatomical location, and number of prior surgeries. Such studies should
290 standardize all adjunctive treatments between groups to isolate the specific effects of HBOT.
291 Additionally, regression analysis including variables such as age, number of prior operations,
292 anatomical location, surgical procedure would help identify the most significant predictors of
293 increased risk of complications. These approaches would provide higher-quality evidence
294 regarding the efficacy of HBOT in this context. Furthermore, additional studies are needed to
295 optimize HBOT regimens, determining the optimal number and timing of sessions to maximize
296 benefits while minimizing costs and inconvenience.

297 Our findings have important implications for clinical practice and future research. For
298 surgeons managing complex redo hypospadias cases, combined pre- and post-operative HBOT
299 represents a potentially valuable adjunct that may improve outcomes in this challenging patient
300 population. The physiological rationale and preliminary clinical evidence suggest that
301 perioperative HBOT may promote neovascularization in scarred tissue, supporting its integration
302 into SOC protocols for complex re-operative cases.

303

304

305

306

Conclusion

307 This retrospective study observed a lower - but not statistically significant - overall
308 complication rates with perioperative HBOT in redo hypospadias repairs (6.4% vs. 25%,
309 P=0.179, 95% CI 0.05-1.26). This preliminary evidence suggests perioperative HBOT may be a
310 valuable adjunct in complex redo hypospadias repairs, but definitive conclusions cannot be
311 drawn from the current study design.

312

313

314

315

316

317

318

319

320

321 **Conflict of Interest Statement**

322 All authors that contributed to this manuscript have no known competing financial interests or
323 personal relationships that could have influenced their work on this paper.

324

325 **Funding Source**

326 This research nor any of the authors who contributed to it received any specific grant or funding
327 for its development.

328

329 **Ethical Approval**

330 This retrospective study involved analysis of de-identified patient data collected as part of
331 routine clinical care. This study was approved by the Institutional Review Board (IRB #17-53).
332 The IRB granted a waiver of informed consent for the use of de-identified clinical data and
333 images. Patient confidentiality was maintained throughout the data collection and analysis
334 process, and no identifiable patient information is included in this manuscript.

335

336

337

338

339

340

341

342

References

343 1. Snodgrass W, Bush NC. Re-operative urethroplasty after failed hypospadias repair: how
344 prior surgery impacts risk for additional complications. *J Pediatr Urol.*
345 2017;13(3):289.e1-289.e6. doi:10.1016/j.jpurol.2016.11.012

346 2. Amukele SA, Stock JA, Hanna MK. Management and Outcome of Complex
347 Hypospadias Repairs. *J Urol.* 2005;174(4 Part 2):1540-1543.
348 doi:10.1097/01.ju.0000176420.83110.19

349 3. Bush N, Snodgrass W. Hyperbaric Oxygen Therapy Improves Oral Graft Take in
350 Hypospadias Staged Tubularized Autograft Reoperations. *J Urol.* 2019;202(3):617-622.
351 doi:10.1097/JU.0000000000000145

352 4. Chang C, White C, Katz A, Hanna MK. Management of ischemic tissues and skin flaps
353 in Re-Operative and complex hypospadias repair using vasodilators and hyperbaric
354 oxygen. *J Pediatr Urol.* 2020;16(5):672.e1-672.e8. doi:10.1016/j.jpurol.2020.07.034

355 5. Hanna MK. The contribution of preconditioning hyperbaric oxygen for complex re-
356 operative surgery of bladder exstrophy and epispadias. A case study of 11 patients. *J*
357 *Pediatr Urol.* 2021 Oct;17(5):656.e1-656.e8. doi: 10.1016/j.jpurol.2021.07.014. Epub
358 2021 Jul 23. PMID: 34400100.

359 6. Anand S, Krishnan N, Bajpai M. Utility and safety of hyperbaric oxygen therapy as a
360 rescue treatment in complicated cases of hypospadias: A systematic review and meta-
361 analysis. *J Pediatr Urol.* 2022;18(1):39-46. doi:10.1016/j.jpurol.2021.10.004

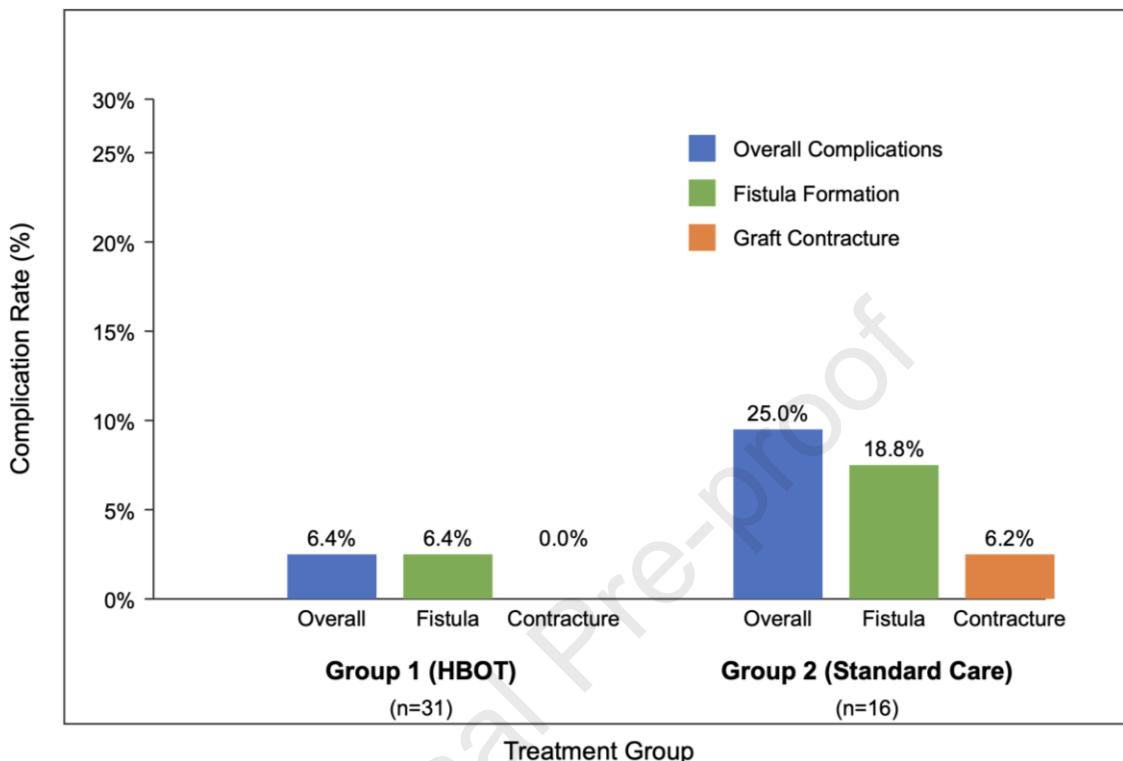
362 7. Friedman T, Menashe S, Landau G, et al. Hyperbaric Oxygen Preconditioning Can
363 Reduce Postabdominoplasty Complications: A Retrospective Cohort Study. *Plast*

364 *Reconstr Surg Glob Open*. 2019;7(10):e2417. Published 2019 Oct 31.
365 doi:10.1097/GOX.0000000000002417

366 8. Chua ME, Kim JJK, Ming JM, et al. The utilization of hyperbaric oxygenation therapy in
367 hypospadias repair: a systematic review and meta-analysis. *Int Urol Nephrol*.
368 2022;54(2):273-285. doi:10.1007/s11255-021-03096-y

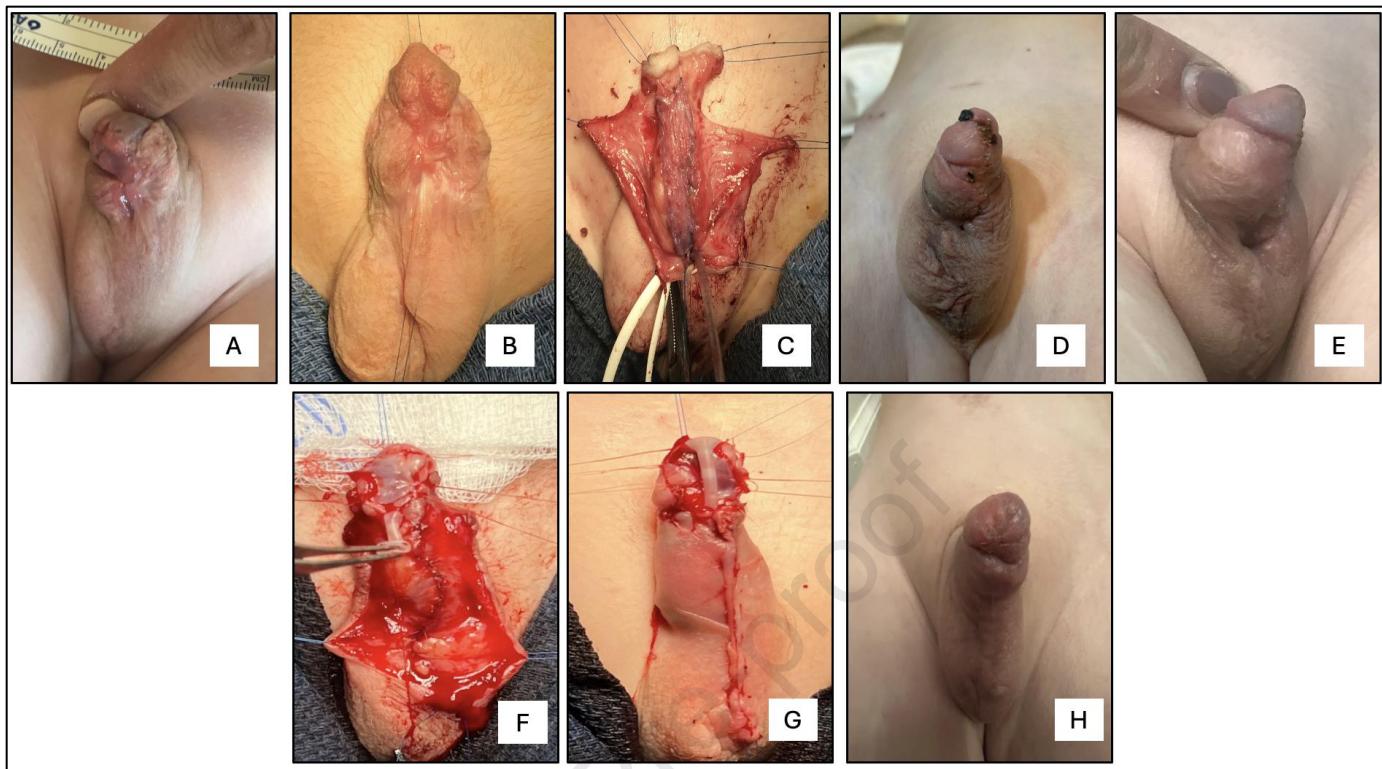
369 9. Kolon TF, Gonzales ET Jr. The dorsal inlay graft for hypospadias repair. *J Urol*.
370 2000;163(6):1941-1943.

371 10. Scheuer S, Hanna MK. Effect of nitroglycerin ointment on penile skin flap survival in
372 hypospadias repair. Experimental and clinical studies. *Urology*. 1986;27(5):438-440.
373 doi:10.1016/0090-4295(86)90410-3


374 11. Gdalevitch P, Van Laeken N, Bahng S, et al. Effects of nitroglycerin ointment on
375 mastectomy flap necrosis in immediate breast reconstruction: a randomized controlled
376 trial. *Plast Reconstr Surg*. 2015;135(6):1530-1539. doi:10.1097/PRS.000000000000123

377 12. Hanna, M., Weiser, A.C. (2004). Thiersch-Duplay Principle. In: Hadidi, A.T., Azmy, A.F.
378 (eds) *Hypospadias Surgery*. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07841-9_16

380 13. Neheman A, Rappaport YH, Verhovsky G, et al. Hyperbaric oxygen therapy for pediatric
381 "hypospadias crippe"-evaluating the advantages regarding graft take. *J Pediatr Urol*.
382 2020;16(2):163.e1-163.e7. doi:10.1016/j.jpurol.2020.01.002


383 14. Mosa H, Paul A, Solomon E, Garriboli M. How accurate is eyeball measurement of
384 curvature? A tool for hypospadias surgery. *J Pediatr Urol*. 2022;18(4):470-476.
385 doi:10.1016/j.jpurol.2022.04.009

386

Tables/Figures**Complication Rates Following Repeat Hypospadias Repair**

387

388 *Figure 1: Comparison of Postoperative Complication Rates in Repeat Hypospadias Repair with*
 389 *and without HBOT*

390

391 *Figure 2: Representative Case Demonstrating Clinical Benefits of Perioperative HBOT in*
 392 *Complex Redo Hypospadias Repair*

393 (A) Pre-operative appearance showing severe penile scarring following three prior major surgical
 394 procedures. (B) Tissue appearance after 20 preoperative HBOT sessions, demonstrating
 395 improved tissue quality and pliability. (C) Intraoperative view during excision of scar tissue and
 396 replacement of corporal wall with dermal graft. (D) Early post-operative healing at 10 days. (E)
 397 Tissue quality at 3 months post-operatively from first stage, showing healing. (F-G) Second-
 398 stage surgery involving proximal Duplay urethroplasty and distal inlay graft. (H) Final post-
 399 operative result demonstrating functional and cosmetic outcome.

400

401

402

Characteristic	Group 1 (HBOT) n=31	Group 2 (SOC) n=16	P-value
Hypospadias Location			.795
Distal	22 (71.0%)	10 (62.5%)	
Proximal	9 (29.0%)	6 (37.5%)	
Surgical Technique			.972
One-stage DIG	22 (71.0%)	10 (62.5%)	
Staged BMG	10 (32.3%)	6 (37.5%)	
Outcomes			
Total Complications	2 (6.4%)	4 (25.0%)	.179 (95% CI 0.05-1.26)
Fistula Formation	2 (6.4%)	3 (18.8%)	.314 (95% CI 0.06-1.85)
Graft Contracture	0 (0%)	1 (6.3%)	.340 (95% CI 0.01-4.12)

403

404

Table 1: Baseline Characteristics and Outcomes

405