

Journal Pre-proof

THE EFFECT OF PENILE TOURNIQUET AND CONTINUOUS ARTIFICIAL ERECTION ON PENILE ERECTILE TISSUES: AN EXPERIMENTAL STUDY

Ayse Karagoz Hakalmaz, Nil Comunoglu, Hakan Sahin, Meral Koyuturk, Haluk Emir

PII: S1477-5131(25)00572-8

DOI: <https://doi.org/10.1016/j.jpurol.2025.10.010>

Reference: JPUROL 5643

To appear in: *Journal of Pediatric Urology*

Received Date: 3 July 2025

Revised Date: 15 October 2025

Accepted Date: 16 October 2025

Please cite this article as: Hakalmaz AK, Comunoglu N, Sahin H, Koyuturk M, Emir H, THE EFFECT OF PENILE TOURNIQUET AND CONTINUOUS ARTIFICIAL ERECTION ON PENILE ERECTILE TISSUES: AN EXPERIMENTAL STUDY, *Journal of Pediatric Urology*, <https://doi.org/10.1016/j.jpurol.2025.10.010>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

THE EFFECT OF PENILE TOURNIQUET AND CONTINUOUS ARTIFICIAL ERECTION ON PENILE ERECTILE TISSUES: AN EXPERIMENTAL STUDY

Ayse Karagoz Hakalmaz¹

¹ Department of Pediatric Surgery, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye. dr.aysekaragoz1@gmail.com <https://orcid.org/0000-0002-9434-6218>

Nil Comunoglu²

² Department of Pathology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye. nilcomunoglu@gmail.com <https://orcid.org/0000-0002-2319-1757>

Hakan Sahin³

³ Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye. hakan.sahin@iuc.edu.tr <https://orcid.org/0000-0002-7607-276X>

Meral Koyuturk³

³ Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye. koyuturk@iuc.edu.tr <https://orcid.org/0000-0002-0270-5069>

Haluk Emir⁴

⁴ Division of Pediatric Urology, Department of Pediatric Surgery, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye. hemir@iuc.edu.tr <https://orcid.org/0000-0001-5954-2937>

Corresponding Author:

Haluk Emir, Division of Pediatric Urology, Department of Pediatric Surgery, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye.

E-mail: hemir@iuc.edu.tr

Address: İstanbul Üniversitesi-Cerrahpaşa Bakırköy Yerleşkesi, Zuhuratbaba Mahallesi. Dr. Tevfik Sağlam Caddesi. No:25 (Bakırköy Ruh ve Sinir Hastalıkları Hastane B Kapısı) 34147 Bakırköy/İstanbul

Journal Pre-proof

1 **THE EFFECT OF PENILE TOURNIQUET AND CONTINUOUS ARTIFICIAL**
2 **ERECTION ON PENILE ERECTILE TISSUES: AN EXPERIMENTAL STUDY**

3 **Abstract**

4 **Introduction**

5 Penile tourniquet (PT) is known to cause ischemic injury, which worsens with prolonged
6 application. Artificial erection (AE), formed by intracorporal saline injection mostly
7 under PT, has been practiced for decades to evaluate penile curvature, yet its effect on
8 erectile tissues has never been investigated. In this study, we examined a modified
9 approach, continuous artificial erection (CAE), and investigated its effects on erectile
10 tissues.

11 **Objective**

12 This study aims to investigate the histopathological and immunohistochemical effects of
13 CAE on penile erectile tissues.

14 **Study Design**

15 Thirty-five rats were randomized into five groups. Four experiment groups received 20
16 or 40 minutes of isolated PT (20T and 40T) or PT with CAE (20T&E and 40T&E). CAE
17 was achieved through continuous intracavernosal saline injection. Penectomy was
18 performed three weeks post-procedure in the experiment groups and directly in the
19 control group. Erectile tissue samples were evaluated using light microscopy for
20 histopathological parameters including inflammation, neovascularization and fibrosis,
21 and by immunohistochemistry. Endothelial function was assessed by eNOS and e-selectin
22 staining, while ICAM-1 staining was used to assess chronic inflammation. Tissue samples
23 were also spared for further investigation involving ultrastructural analysis.

24 **Results**

25 40T showed the highest levels of inflammation, fibrosis, and endothelial dysfunction. 20T
26 had significantly less inflammation than 40T, with a non-significant increase in fibrosis
27 and alteration of endothelial markers. 40T&E displayed the second-highest fibrosis rate
28 (adjusted $p>0.05$), while 20T&E showed complete absence of fibrosis. Both 40T&E and
29 20T&E preserved strong eNOS and e-selectin expression, identical to controls. ICAM-1
30 expression in 20T&E was also consistent with the control group. The most significant
31 difference in erectile tissue damage was noted between 40T and 20T&E.

32 **Conclusion**

33 This is the first study to evaluate the effects of AE on erectile tissues. Findings of this
34 experimental model support that, CAE does not increase the tissue damage that is already
35 caused by PT, but rather reduces it, likely through the washout of blood elements
36 contributing to reperfusion injury. CAE possibly provides a protective effect on erectile
37 tissues by preserving endothelial function, reducing inflammation and fibrosis, especially
38 under 20 minutes of duration. These findings may support that AE maneuvers such as
39 “artificial erection test” and CAE are potentially safe, while further studies involving
40 ultrastructural analysis are needed to assess the detailed effects of CAE.

41 **Keywords:** penile erection, penile tourniquet, artificial erection, ischemia reperfusion
42 injury

43 **Introduction**

44 Penile tourniquet (PT) is the most commonly used method for hemostasis during pediatric
45 penile surgery [1]. Artificial erection (AE) is also commonly used to evaluate penile
46 curvature and is formed by intracavernosal injection of saline solution, mostly under PT
47 [2]. Although AE was first described in 1974 and has been widely used ever since, its
48 effects on erectile tissues have not yet been investigated.

49 Experimental studies on PT and hypospadias repair models have indicated that PT can
50 cause ischemia–reperfusion injury (IRI), even after short durations, and that the severity
51 increases with prolonged application [3-6].

52 Recently, in our clinical practice, we hypothesized that maintaining artificial erection
53 continuously during penile surgery would ensure that erectile tissues are filled with saline
54 rather than blood, thereby minimizing bleeding and potentially facilitating dissection. In
55 addition, curvature correction can be reassessed intraoperatively, allowing the procedure
56 to be completed with a single PT, without repeated ischemia-reperfusion cycles. As a
57 preliminary step to explore this potential surgical relevance, we designed an experimental
58 model.

59 Our current study was therefore conducted to investigate whether continuous saline
60 injection into the corpus cavernosum would exacerbate the tissue damage that is already
61 caused by PT, due to increased intracavernosal hydrostatic pressure, or conversely,
62 whether it would alleviate tissue injury by continuously washing out harmful blood
63 products known to contribute to reperfusion injury.

64 This study aims to evaluate the histopathological and immunohistochemical effects of
65 “continuous artificial erection” (CAE) under PT on penile erectile tissues.

66 **Material and methods**

67 Thirty-five male Sprague Dawley rats aged 16 to 18 weeks, weighing 320 to 450 grams,
68 were used for the study groups. All animals were housed in individual cages under
69 standardized conditions of temperature, moisture, light, and were fed ad libitum.

70 **Experimental model design**

71 For this study, we firstly designed and standardized a method for achieving CAE on the
72 rat penis. The most feasible and reproducible system was gained by using double folded
73 1.3 mm silicone band, 25-gauge butterfly needle and a pressure control system formed
74 by an infuser pump with 4cc/minute infusion rate that is attached to a two-way venous
75 valve and a 10cc syringe for controlled manual support (Figure 1-2). This system was
76 tested by connecting an empty fluid line to the venous valve during full erectile state and
77 was seen to not exceed the physiological erectile intracavernosal pressure for the adult rat
78 penis [7]. Saline solutions were used at room temperature.

79 Penile degloving (PD) was found to be necessary. Since the preputium of rat penis is
80 multilayered and very elastic, secure needle placement was challenging with trans-dermal
81 injections. Even with precise needle placement, secondary saline leakage resulted in
82 severe mucosal edema and subcutaneous tissue damage, which was foreseen to influence
83 the protein expression and histopathological findings. Trans-glanular injections did not
84 provide adequate erection. Most preferable place for needle placement was the proximal
85 corpora, with sufficient width for stabilization and distance from the neurovascular
86 bundles posterolaterally and the urethra anteriorly. The needle was advanced until the end
87 of its open tip entered the corpora and was checked to be in position with the infusion
88 onset, then was manually stabilized using tactile feedback throughout the procedure.

89 **Study groups**

90 Thirty-five rats were randomly allocated into 5 study groups, one control group and 4
91 experiment groups, each containing 7 rats. PD and penectomy were done in the control
92 group (C). Experiment groups were as follows: Group 20T: PD and 20 minutes of isolated
93 PT, Group 20T&E: PD and 20 minutes of CAE under PT, Group 40T: PD and 40 minutes
94 of isolated PT, Group 40T&E: PD and 40 minutes of CAE under PT.

95 Rats were anesthetized by intraperitoneal injection of ketamine hydrochloride (80-
96 100mg/kg, Ketalar, Eczacıbaşı ®) and midazolam (4-5 mg/kg, Dormicum, Deva Holding
97 ®). The naturally buried rat penis was exposed, and manual traction was applied. The
98 penile area was cleaned with 10% povidone-iodine solution and prepared with sterile
99 drapes. After total PD, PT was placed to the base of the penis and kept for 20 or 40
100 minutes for the isolated PT groups. CAE was added for the T&E groups. At the end, the
101 needle was taken out and PT was removed. After ensuring there was no bleeding from
102 the puncture site, degloving line was repaired with separate 7/0 Maxon sutures and the
103 penis was buried back. Postoperatively, enteral paracetamol (1-2mg/mL) was added to
104 the rats' drinking water. Three weeks following the procedures, rats were anesthetized in
105 the same manner and penectomies were done following PD, as done in the control group.

106 **Histopathological evaluation**

107 The specimens were fixed with 10% formalin and embedded in paraffin blocks. Tissues
108 were cut into 5 μ m sections using a microtome, followed by staining with hematoxylin-
109 eosin and Masson's trichrome protocols. Samples were investigated under light
110 microscope by a pathologist with twenty years of experience who was blind to the study
111 groups.

112 All samples were evaluated and scored (0–3) for inflammation, neovascularization, and
113 fibrosis, as described in the literature [3]. Inflammation was graded as: none (0), mild (1),
114 moderate (2), or severe (3), based on the density of polymorphonuclear and mononuclear
115 cell infiltration. Neovascularization was graded as: none (0), mild (1), moderate (2), or
116 severe (3) vascular proliferation. Fibrosis was graded as: none (0), mild (1), moderate (2),
117 or severe (3, with hyalinization), based on the degree of collagen deposition and fibroblast
118 proliferation.

119 **Immunohistochemical evaluation**

120 Two μ m sections were prepared, deparaffinized and rehydrated. Automatic specimen
121 staining equipment (Ventana Medical Systems, Tucson, AZ, USA) and indirect “biotin-
122 free” system was used. eNos (endothelial nitric-oxide synthase) antibody
123 (ABCAM/ab185698, 1:100), e-selectin (CD62E) antibody (ABCAM/ab5589, 1:100) and
124 ICAM-1 (intracellular adhesion molecule-1) antibodies (ABCAM/ab282575-10U1,
125 1:100) were stained for 1 hour. Amplification Kit was used for signal augmentation.
126 ROCHE/Cell Conditioning 1 (CC1) (EDTA) 60-minute standard protocol was used for
127 antigen retrieval. Positive control tests with appropriate tissues and 0.1% hematoxylin
128 counterstaining were conducted. Following dehydration and coverage, specimens were
129 investigated under light microscope. Cytoplasmic staining was interpreted as positive
130 staining. Density was scored as: negative (0), weak (1), moderate (2) and strong (3), in
131 accordance with the literature [3].

132 **Statistical analysis**

133 SPSS 15.0 for Windows program was used. Descriptive data were presented as numbers
134 and percentages. Scorings were evaluated as ordinal variables (scale: 0 to 3). Group

135 differences were assessed using the Kruskal–Wallis test. When significant differences
 136 were detected ($p < 0.05$), post-hoc pairwise comparisons were conducted using the
 137 Bonferroni correction to adjust for multiple comparisons. An adjusted p -value < 0.005
 138 was considered statistically significant.

139 **Results**

140 Table 1A-B demonstrate the scoring results.

141 **1) Histopathology**

142 **a) Inflammation**

143 Group C showed no inflammation. All cases in 40T showed inflammation with
 144 lymphoplasmacytic cells (LPC) (Figure 3a). Among all animals, only one in 40T showed
 145 marked inflammation (score 2), remaining responses were mild (score 1). The second
 146 highest rate was in 40T&E, which exhibited hemosiderin loaded macrophages along with
 147 LPC (Figure 3b). Group 20T&E showed LPC's in 2 animals. Group 20T showed
 148 hemorrhagic congestion in one animal. With adjusted analysis, differences between 40T
 149 and C, 20T, and 20T&E were statistically significant ($p < 0.05$). In the initial analysis,
 150 40T vs. 40T&E also showed a significant difference; however, this was lost after
 151 adjustment. Group 40T&E showed no significant difference compared to C and either of
 152 the 20T or 20T&E groups, and 20T&E did not show a significant increase in
 153 inflammation compared to C or 20T.

154 **b) Neovascularization**

155 All animals in 40T, 40T&E, and 20T exhibited mild neovascularization (score 1)
 156 compared to C (adjusted $p = 0.000$). The corresponding ratio was 57.1% for 20T&E,
 157 which did not show a significant difference from the control group after post-hoc analysis
 158 (adjusted $p = 0.197$), despite a raw p -value of 0.02.

159 **c) Fibrosis**

160 Group C showed no fibrosis. The highest rate of fibrosis was present in 40T, followed by
161 40T&E and 20T respectively, and all were of mild density (score 1) (Figure 3c).
162 Compared to the control group, only 40T showed a significant increase in fibrosis
163 (adjusted $p < 0.005$). No fibrosis was present in any of the cases in 20T&E. In pairwise
164 comparisons, 20T&E vs. 40T&E showed a significant difference in the raw analysis (raw
165 $p = 0.007$) but did not retain significance after correction (adjusted $p = 0.72$). In contrast,
166 20T&E vs. 40T remained significant after adjustment (adjusted $p = 0.013$). Other pairwise
167 comparisons did not show statistical significance ($p > 0.05$).

168 **2) Immunohistochemistry**

169 **eNOS**

170 Groups C, 20T&E, and 40T&E showed strong density staining (score 3) for eNOS, in all
171 of their cases (Figure 3d-e). The lowest levels of eNOS positivity were detected in 40T,
172 where all cases revealed moderate density staining (score 2) (Figure 3f). Group 20T had
173 71.4% strong and 28% moderate density staining. Differences between 40T and C,
174 20T&E and 40T&E remained significant after adjustment (adjusted $p < 0.05$). In contrast,
175 the difference between 40T and 20T was significant in the raw analysis (raw $p < 0.05$)
176 but lost significance after adjustment. Group 20T did not show significant differences
177 from C or T&E groups ($p > 0.05$).

178 **a) e-selectine (CD62E)**

179 Groups C, 20T&E, and 40T&E showed strong density staining (score 3) for e-selectine,
180 in all their cases (Figure 3g, i). Groups 20T and 40T revealed equal rates of strong (71.4%)
181 and moderate (28.6%) density staining (Figure 3h). Differences between isolated PT
182 groups and the others were not significant ($p > 0.05$).

183 b) ICAM-1

184 Groups C and 20T&E did not reveal any strong density staining (score 3), while they both
185 showed 85.7% moderate (score 2) and 14.3% weak (score 1) positive staining (Figure 3j-
186 k). Group 40T&E showed the same rate of moderate staining along with 14.3% strong
187 positivity. Group 20T also showed 14.3% strong positivity, with 71.4% moderate and
188 14.3% weak positive staining. Group 40T revealed the highest rate of strong (42.9%)
189 density staining, with no cases of weak positivity (Figure 3l). In pairwise comparisons, C
190 vs. 40T (raw $p = 0.005$) and 20T&E vs. 40T (raw $p = 0.04$) were statistically significant
191 in the unadjusted analysis; however, neither retained significance after correction
192 (adjusted $p > 0.05$). There was no statistical significance among other group comparisons
193 ($p > 0.05$).

194 Discussion

195 IRI secondary to PT has been investigated by various studies [3-6]. However, a consensus
196 on the ideal PT duration is not present. Even 10 minutes of PT was shown to cause a rise
197 in the malondialdehyde levels and affect tissue growth factors [4,5]. In a rabbit model,
198 Bozkurt et al. studied cavernosal endothelial cholinergic relaxation responses under PT
199 and showed they were not affected at 20 minutes but were irreversibly affected at 40 and
200 60 minutes of PT [6].

201 There are few studies on PT use in experimental hypospadias models. In a rat model,
202 Boybeyi et al. showed that 10 minutes of PT increased the risk of bacterial adhesion,
203 resulted in significant endothelial damage and limited endothelial cell proliferation [3].
204 Kajbafzadeh et al. studied the uroepithelial ultrastructural alterations in different
205 hemostasis methods and demonstrated that while PT causes damage to the urothelium, it
206 is safer than other methods [8]. Gulburun et al. demonstrated that intraperitoneally

207 administered hydrogen-rich saline solution exerted a protective effect against acute IRI
208 in a rat Mathieu flap model, at both 10 and 30 minutes of PT duration [9]. Our model
209 directly infused regular saline intracavernosally during PT, to look for a localized
210 protective approach while also achieving a prolonged erection.

211 Artificial erection test (AET) has been widely used in pediatric urology for decades. AET
212 has been criticized for the potential of causing supra or sub-physiological intracorporal
213 pressure to alter surgical findings [10]. It is also not known if the uncontrolled pressure
214 may result in erectile tissue damage. To our knowledge, this is the first study to
215 investigate the effects of AE on penile tissues.

216 AET may represent an intermittent form of PT when repeated to check for curvature
217 correction. Although the duration of each AET is minimal, it still exposes tissues to
218 repeated ischemia–reperfusion cycles. If proven safe and incorporated into practice, CAE
219 would allow dissection and curvature control to be performed under a single continuous
220 erection, thus avoiding repeated tourniquet applications.

221 eNOS is involved in the synthesis of nitric oxide (NO), a potent vasodilator in penile
222 erection mechanism [11]. Immunohistochemical decrease of eNOS secondary to chronic
223 cavernosal ischemia was shown to be present in a rabbit model of chronic atherosclerosis
224 [12] and a rat model of age-related ischemia [13].

225 ICAM-1 is a transmembrane glycoprotein that is continuously expressed on endothelial
226 cells which increases under oxidative stress, with a critical role in inflammation
227 [14,15]. There is a known inverse relation between NO and ICAM-1. With IRI, NO
228 decreases while ICAM-1 increases [16]. In our study, the decrease of eNOS was taken as

229 a pointer of endothelial dysfunction or loss of endothelial integrity, while the increase of
230 ICAM-1 was considered a sign of chronic inflammation.

231 e-selectin (CD62E) is an adhesion molecule that is increased by inflammation and
232 hypoxia, with a major role in endothelial repair following ischemia [17-19]. It is
233 characterized by a rapid peak of expression followed by a faster return to baseline than
234 ICAM-1 [20]. In a study investigating late findings of endothelial inflammation, e-
235 selectin was detected to return to its basic levels in less than 24 hours, while maximum
236 levels of ICAM-1 were preserved for prolonged periods [21]. ICAM-1 also has a
237 “recycling” mechanism that aids in its continuance [22].

238 e-selectine requires endothelial cells to be “activated” for its synthesis in most organs,
239 while it is continuously present in regions like skin and bone marrow [23]. To our
240 knowledge, the expression pattern of e-selectin in the corpus cavernosum has not been
241 previously described. Our study revealed dense positive staining for all animals in group
242 C, which may be an indicator for e-selectin being continuously expressed in cavernous
243 sinusoidal endothelium and provide an insight for future studies. In addition, we observed
244 a non-significant trend towards reduced e-selectin expression in the isolated PT groups,
245 which may suggest a potential role in signaling endothelial integrity, but requires further
246 investigation.

247 According to our findings, the addition of CAE to isolated PT resulted in favorable
248 outcomes. Among all groups, the most severe injury occurred with prolonged isolated PT
249 (40T), while the most prominent protection was achieved with the addition of CAE at 20
250 minutes (20T&E). Therefore, in pairwise comparisons, the most consistent statistical
251 differences were observed between groups 40T and 20T&E.

252 The presence of LPC across all study groups is compatible with penectomy timing and
253 chronic inflammation. Hemosiderin loaded macrophages observed in 40T&E were
254 considered to represent microscopic foci of hemorrhage and were unique to this group.
255 Animals in 40T&E also exhibited more pronounced painful posture during follow-up,
256 which may be a representation of this finding. However, when prolonged PT settings
257 were compared (40T vs. 40T&E), CAE was associated with overall more beneficial
258 trends, including considerably lower inflammation, less fibrosis, reduced ICAM-1, and
259 preserved e-selectin expression. While these changes did not retain significance after
260 adjustment, eNOS showed a clear 100% difference that remained significant. These
261 findings suggest that in a setting of significant cellular damage induced by prolonged PT,
262 the potential benefit of CAE is most sensitively captured by eNOS expression.

263 When comparing 20 minutes of isolated PT with the addition of CAE (20T vs. 20T&E),
264 inflammation represented the only parameter where 20T&E performed slightly worse
265 ($p>0.05$). In contrast, neovascularization was substantially reduced, and fibrosis was
266 completely resolved in 20T&E. Although these differences did not reach statistical
267 significance, likely due to the limited sample size and variability within groups, they can
268 support the protective nature of CAE. Likewise, in terms of immunohistochemistry,
269 20T&E maintained a profile consistent with controls, whereas 20T demonstrated small
270 deviations.

271 When comparing isolated PT at 20 and 40 minutes, inflammation was the only parameter
272 that showed a statistically significant difference. Although fibrosis, ICAM-1 and eNOS
273 showed notable but non-significant variation, neovascularization and e-selectin remained
274 unchanged. Collectively, the lack of consistent differences between the two PT durations
275 likely reflects the fact that both caused a comparable degree of tissue damage.

276 In the comparison of CAE groups, fibrosis was the only parameter that differed
277 significantly in the raw analysis, and although this was not retained after correction, it
278 likely reflects the marked reduction of fibrosis observed in the 20T&E group. ICAM-1
279 showed minor variation, in parallel with the histopathological inflammation findings,
280 while eNOS and E-selectin were identical across both groups. The relative similarity
281 between the two CAE groups, and their immunohistochemical resemblance both to each
282 other and the control group, may support the idea that CAE exerts a protective effect even
283 in prolonged durations of PT, and that immunohistochemistry is a more sensitive tool to
284 detect it.

285 The beneficial effect of CAE may be explained by the washout of harmful blood products,
286 similar to organ preservation models [24]. CAE may also resemble the concept of shear
287 preconditioning, whereby continuous fluid exposure reduces endothelial activation and
288 inflammation [25,26]. These potential mechanisms remain hypothetical and require
289 further experimental validation.

290 Limitations of this study include the lack of intracorporal pressure transducer usage,
291 where instead we designed a safe, low-cost system that could be applied in clinical
292 practice, if necessary. The small and delicate nature of the rat erectile tissues may make
293 puncture and continuity of erection difficult, possibly hindering standardization. We
294 believe this risk was minimized by detailed testing and observation.

295 In conclusion: CAE, especially when kept under 20 minutes, does not increase the erectile
296 tissue damage that is already caused by PT, but rather reduces it by alleviating
297 inflammation and fibrosis, while exerting a protective effect on endothelial function.
298 Based on the current experimental results, AE maneuvers such as AET and CAE may be

299 considered safe to apply in pediatric urology. Our ongoing studies involving transmission
300 electron microscopy aim to provide further insight on the cellular impact of PT and, in
301 particular, CAE, which if proven to be non-detrimental, may contribute to improved
302 tissue healing and surgical outcomes during pediatric penile surgery.

303 **Ethical statement**

304 This study was approved by the Animal Research Local Ethics Committee (22.09.2021-
305 2021/01), and the procedures were performed in compliance with relevant laws and
306 institutional guidelines.

307 **Declaration of Generative AI and AI-assisted technologies in the writing process**

308 During the preparation of this manuscript, generative AI tools (ChatGPT) were used
309 solely for language refinement. All scientific content was produced, reviewed, and
310 approved by the authors.

311 **Declaration of interest**

312 None.

313 **References**

314 Ateş U, Ekberli G, Yaşam Taştekin N, Göllü G, Çakmak M. Tourniquet and adrenaline
315 use in hypospadias surgery: A survey on the current practice in Turkey. Turk J Urol
316 2019;45:218–22. <https://doi.org/10.5152/tud.2018.94412>.

317 Gittes RF, McLaughlin AP. Injection technique to induce penile erection. Urology
318 1974;4:473–4. [https://doi.org/10.1016/0090-4295\(74\)90025-9](https://doi.org/10.1016/0090-4295(74)90025-9).

319 Boybeyi-Turer O, Kacmaz B, Arat E, Atasoy P, Kisa U, Gunal YD, et al. Does penile
 320 tourniquet application alter bacterial adhesion to rat urethral cells: an in vitro study. *J
 321 Pediatr Surg* 2018;53:818–24. <https://doi.org/10.1016/j.jpedsurg.2017.06.018>.

322 Cakmak M, Caglayan F, Kisa U, Bozdogan O, Saray A, Caglayan O. Tourniquet
 323 application and epinephrine injection to penile skin: Is it safe? *Urol Res* 2002;30:268–72.
 324 <https://doi.org/10.1007/s00240-002-0262-5>.

325 Kaya M, Soyer T, Ayva S, Çakmak M. Effect of penile tourniquet on growth factors in
 326 rat penile tissue. *European Journal of Pediatric Surgery* 2009;19:236–40.
 327 <https://doi.org/10.1055/s-0029-1215600>.

328 Bozkurt NB, Moralioglu S, Vural IM, Sarioglu Y, Pekiner C. Does tourniquet application
 329 alter the nitrergic responses of rabbit corpus cavernosum penis? *World J Urol*
 330 2008;26:191–6. <https://doi.org/10.1007/s00345-007-0233-0>.

331 Song L-J, Zhu J-Q, Xie M-K, Wang Y-C, Li H-B, Cui Z-Q, et al. Electrocautery-induced
 332 cavernous nerve injury in rats that mimics radical prostatectomy in humans. *BJU Int*
 333 2014;114:133–9. <https://doi.org/10.1111/bju.12348>.

334 Kajbafzadeh AM, Payabvash S, Tavangar SM, Salmasi AH, Sadeghi Z, Elmi A, et al.
 335 Comparison of Different Techniques for Hemostasis in a Rabbit Model of Hypospadias
 336 Repair. *Journal of Urology* 2007;178:2555–60.
 337 <https://doi.org/10.1016/j.juro.2007.08.051>.

338 Gulburun MA, Karabulut R, Turkyilmaz Z, Eryilmaz S, Kaya C, Arslan B, et al. Protective
 339 effects of hydrogen rich saline solution on ventral penile mathieu type flap with penile
 340 tourniquet application in rats. *J Pediatr Urol.* 2021 Jun;17(3):292.e1-292.e7. doi:
 341 10.1016/j.jpurol.2021.01.046.

340] Snodgrass, WT. Management of penile curvature in children. *Curr Opin Urol*.
 343 2008;18(4), 431–435. <https://doi.org/10.1097/MOU.0b013e32830056d0>.

344] Wildhirt SM, Suzuki H, Horstman D, Weismüller S, Dudek RR, Akiyama K, et al.
 345 Selective Modulation of Inducible Nitric Oxide Synthase Isozyme in Myocardial
 346 Infarction. *Circulation* 1997;96:1616–23. <https://doi.org/10.1161/01.CIR.96.5.1616>.

347] Azadzoi K, Goldstein I, Siroky M, Traish A, Krane R, De Tejada I. Mechanisms of
 348 ischemia-induced cavernosal smooth muscle relaxation impairment in a rabbit model of
 349 vasculogenic erectile dysfunction. *J Urol* 1998;2216–22.
 350 <https://doi.org/10.1097/00005392-199812010-00089>.

348] Ozbek E, Tasci AI, Ilbey YO, Simsek A, Somay A, Metin G. The effect of regular
 352 exercise on penile nitric oxide synthase expression in rats. *Int J Androl* 2010;33:623–8.
 353 <https://doi.org/10.1111/j.1365-2605.2009.00993.x>.

349] Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. *Pharmacological Reports*
 355 2009;61:22–32. [https://doi.org/10.1016/S1734-1140\(09\)70004-0](https://doi.org/10.1016/S1734-1140(09)70004-0).

350] Muro S, Mateescu M, Gajewski C, Robinson M, Muzykantov VR, Koval M. Control of
 357 intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na⁺/H⁺
 358 exchanger proteins. *American Journal of Physiology-Lung Cellular and Molecular
 359 Physiology* 2006;290:L809–17. <https://doi.org/10.1152/ajplung.00311.2005>.

360] Jugdutt BI. Nitric oxide and cardioprotection during ischemia-reperfusion. *Heart Fail Rev*
 361 2002;7:391–405. <https://doi.org/10.1023/A:1020718619155>.

362] Zhang J, Huang S, Zhu Z, Gatt A, Liu J. E-selectin in vascular pathophysiology. *Front Immunol.* 2024 Jul 19;15:1401399. doi: 10.3389/fimmu.2024.1401399. PMID: 39100681; PMCID: PMC11294169.

363

364

365

366] Song S, Yi Z, Zhang M, Mao M, Fu L, Zhao X, et al. Hypoxia inhibits pulmonary artery endothelial cell apoptosis via the e-selectin/biliverdin reductase pathway. *Microvasc Res.* 2016 Jul;106:44-56. doi: 10.1016/j.mvr.2016.03.009. Epub 2016 Mar 28. PMID: 27033411.

367

368

369] Nishiwaki Y, Yoshida M, Iwaguro H, Masuda H, Nitta N, Asahara T, et al. Endothelial E-selectin potentiates neovascularization via endothelial progenitor cell-dependent and - independent mechanisms. *Arterioscler Thromb Vasc Biol.* 2007 Mar;27(3):512-8. doi: 10.1161/01.ATV.0000254812.23238.2b. Epub 2006 Dec 14. PMID: 17170379.

370

371

372

373] Bevilacqua MP, Nelson RM, Mannori G, Cecconi O. Endothelial-leukocyte adhesion molecules in human disease. *Annu Rev Med.* 1994;45:361-78. doi: 10.1146/annurev.med.45.1.361. PMID: 7515220.

374

375

376] Valenzuela NM. Late phase endothelial cell inflammation is characterized by interferon response genes and driven by JAK / STAT , not NF κ B 2022;146.

377

378] Muro S, Gajewski C, Koval M, Muzykantov VR. ICAM-1 recycling in endothelial cells: a novel pathway for sustained intracellular delivery and prolonged effects of drugs. *Blood* 2005;105:650–8. <https://doi.org/10.1182/blood-2004-05-1714>.

379

380

381] McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. *Cardiovasc Res* 2015;107:331–9. <https://doi.org/10.1093/cvr/cvv154>.

382

383] Slegtenhorst BR, Dor FJ, Rodriguez H, Voskuil FJ, Tullius SG. Ischemia/reperfusion
 384 Injury and its Consequences on Immunity and Inflammation. *Curr Transplant Rep.* 2014
 385 Sep 1;1(3):147-154. doi: 10.1007/s40472-014-0017-6. PMID: 25419507; PMCID:
 386 PMC4235532.

387] Huang RB, Eniola-Adefeso O. Shear stress modulation of IL-1 β -induced E-selectin
 388 expression in human endothelial cells. *PLoS One.* 2012;7(2):e31874. doi:
 389 10.1371/journal.pone.0031874. Epub 2012 Feb 24. PMID: 22384091; PMCID:
 390 PMC3286450.

391] Cheng H, Zhong W, Wang L, Zhang Q, Ma X, Wang Y, Wang S, He C, Wei Q, Fu C.
 392 Effects of shear stress on vascular endothelial functions in atherosclerosis and potential
 393 therapeutic approaches. *Biomed Pharmacother.* 2023 Feb;158:114198. doi:
 394 10.1016/j.biopha.2022.114198. Epub 2023 Jan 3. PMID: 36916427.

395 **Figure Legends**

396 **Figure 1:** **A)** dorsal view **B)** lateral view after PD +PT application. **C)** injection into
 397 proximal corpus cavernosum with 24-gauge butterfly needle to form AE.

398 **Figure 2:** **A-B)** continuous injection and pressure control system involving an infuser
 399 pump, two-way venous valve and 10cc syringe.

400 **Figure 3:** **A)** Mild lymphoplasmacytic cell infiltration (arrow) and neovascularization in
 401 G20T&E (H&E $\times 400$). **B)** Hemosiderin loaded macrophages (arrow) in G40T&E (H&E
 402 $\times 400$). **C)** Mild fibrosis in G40T (MTC $\times 200$). **D)** High-density immunopositivity (score
 403 3) in G20T&E (ENOS $\times 200$). **E)** High-density immunopositivity (score 3) in G40T&E
 404 (ENOS $\times 200$). **F)** Moderate-density immunopositivity (score 2) in G40T (ENOS $\times 200$).
 405 **G)** High-density immunopositivity (score 3) in group C (e-selectine $\times 200$) **H)** Moderate-

406 density immunopositivity (score 2) in 20T (e-selectine $\times 200$) **I**) High-density
407 immunopositivity (score 3) in 40T&E (e-selectine $\times 200$) **J**) Moderate-density
408 immunopositivity (score 2) in group C (ICAM-1 $\times 200$) **K**) Moderate-density
409 immunopositivity (score 2) in 20T&E (ICAM-1 $\times 200$) **L**) High-density
410 immunopositivity (score 3) in 40T (ICAM-1 $\times 200$)

411

412

		G20T	G20T&E	G40T	G40T&E	GC
	Score	n (%)				
Inflammation	0	6 (85.7%)	5 (71.4%)	0 (0.0%)	4 (57.1%)	7 (100%)
	1	1 (14.3%)	2 (28.6%)	6 (85.7%)	3 (42.9%)	0 (0.0%)
	2	0 (0.0%)	0 (0.0%)	1 (14.3%)	0 (0.0%)	0 (0.0%)
Neovascularization	0	0 (0.0%)	3 (42.9%)	0 (0.0%)	0 (0.0%)	7 (100%)
	1	7 (100%)	4 (57.1%)	7 (100%)	7 (100%)	0 (0.0%)
Fibrosis	0	4 (57.1%)	7 (100%)	1 (14.3%)	2 (28.6%)	7 (100%)
	1	3 (42.9%)	0 (0.0%)	6 (85.7%)	5 (71.4%)	0 (0.0%)
e-NOS	2	2 (28.6%)	0 (0.0%)	7 (100%)	0 (0.0%)	0 (0.0%)
	3	5 (71.4%)	7 (100%)	0 (0.0%)	7 (100%)	7 (100%)
e-selectine	2	2 (28.6%)	0 (0.0%)	2 (28.6%)	0 (0.0%)	0 (0.0%)
	3	5 (71.4%)	7 (100%)	5 (71.4%)	7 (100%)	7 (100%)
ICAM-1	1	1 (14.3%)	1 (14.3%)	0 (0.0%)	0 (0.0%)	1 (14.3%)
	2	5 (71.4%)	6 (85.7%)	4 (57.1%)	6 (85.7%)	6 (85.7%)
	3	1 (14.3%)	0 (0.0%)	3 (42.9%)	1 (14.3%)	0 (0.0%)

413

414 **Table 1A:** Histopathological and immunohistochemical results. *Scores that have zero*
 415 *percentage in all groups are not added.*

416 **Abbreviations:** C, control; 20T / 40T, 20/40-minute penile tourniquet; 20T&E /40T&E,
 417 20/40-minute penile tourniquet with continuous artificial erection

418

419

420

	Inflammation	Neovascularisation	Fibrosis	e-NOS	e-selectine	ICAM-1
	Raw p/Adj p	Raw p/Adj p	Raw p/Adj p	Raw p/Adj p	Raw p/Adj p	Raw p/Adj p
GC vs. G20T	0.599/1	<0.001/0.000*	0.107/1	0.228/1	0.098/0.977	0.569/1
GC vs. G20T&E	0.293/1	0.020/0.197	1/1	1/1	1/1	1/1
GC vs. G40T	<0.001/0.001*	<0.001/0.000*	0.001/0.013*	<0.001/0.000*	0.098/0.977	0.025/0.251
GC vs. G40T&E	0.115/1	<0.001/0.000*	0.007/0.72	1/1	1/1	0.270/1
G20T vs. G20T&E	0.599/1	0.080/0.802	0.107/1	0.228/1	0.098/0.977	0.569/1
G20T vs. G40T	<0.001/0.08*	1/1	0.107/1	0.003/0.26	1/1	0.095/0.946
G20T vs. G40T&E	0.293/1	1/1	0.282/1	0.228/1	0.098/0.977	0.594/1
G20T&E vs. G40T	0.005/0.047*	0.080/0.802	0.001/0.013*	<0.001/0.000*	0.098/0.977	0.025/0.251
G20T&E vs. G40T&E	0.599/1	0.080/0.802	0.007/0.72	1/1	1/1	0.270/1
G40T vs. G40T&E	0.021/0.21	1/1	0.591/1	<0.001/0.000*	0.098/0.977	0.255/1

421

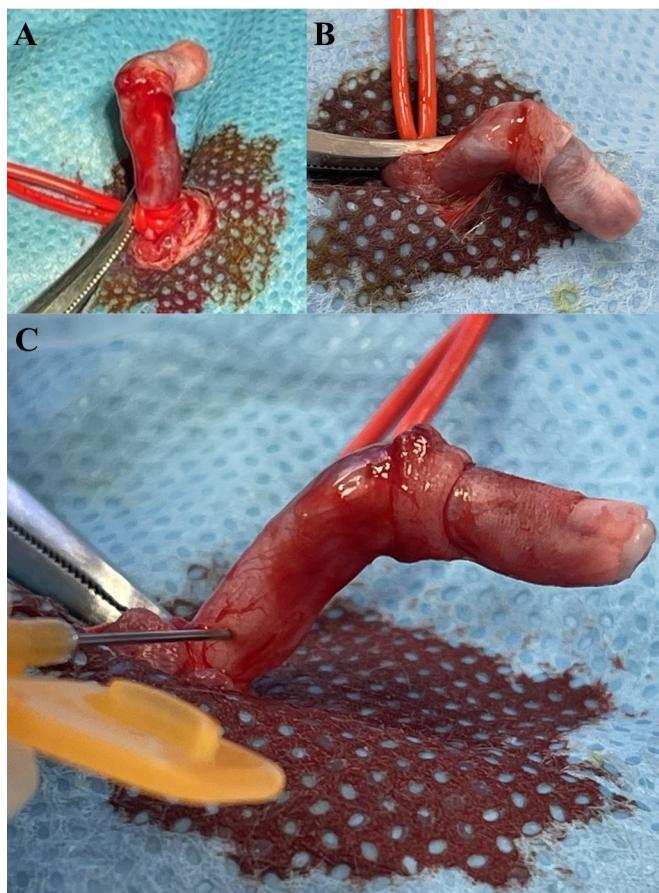
422 **Table 1B:** Pairwise comparison of histopathological and immunohistochemical scores between study groups. Raw p-values and
 423 Bonferroni-adjusted p-values (Raw p/Adj p) are presented. Statistically significant differences (adjusted p < 0.05) are indicated with an
 424 asterisk (*). **Abbreviations:** **C**, control; **20T / 40T**, 20/40-minute penile tourniquet; **20T&E / 40T&E**, 20/40-minute penile tourniquet with
 425 continuous artificial erection.

426

427

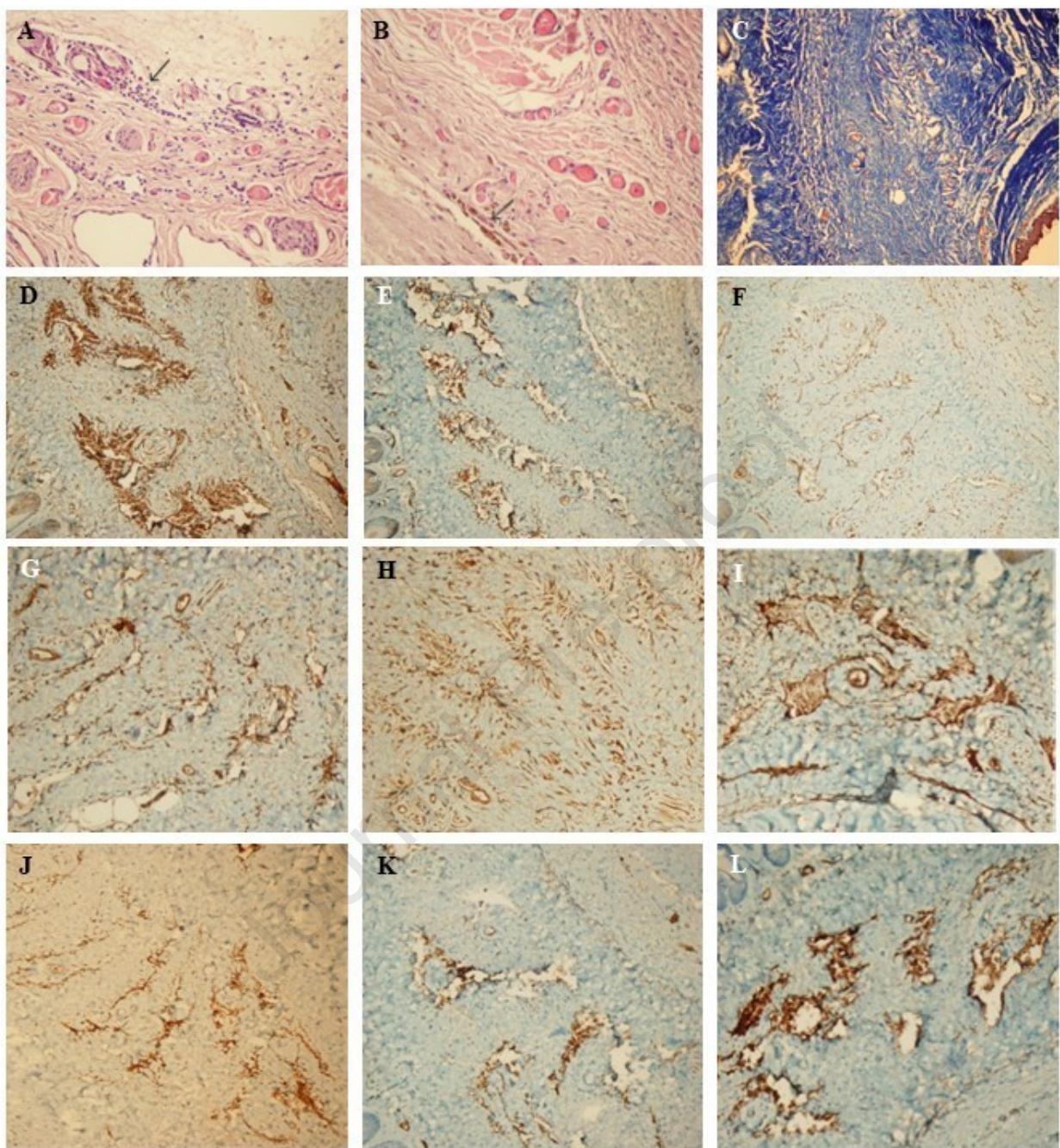
428

		G20T	G20T&E	G40T	G40T&E	GC
	Score	n (%)				
Inflammation	0	6 (85.7%)	5 (71.4%)	0 (0.0%)	4 (57.1%)	7 (100%)
	1	1 (14.3%)	2 (28.6%)	6 (85.7%)	3 (42.9%)	0 (0.0%)
	2	0 (0.0%)	0 (0.0%)	1 (14.3%)	0 (0.0%)	0 (0.0%)
Neovascularization	0	0 (0.0%)	3 (42.9%)	0 (0.0%)	0 (0.0%)	7 (100%)
	1	7 (100%)	4 (57.1%)	7 (100%)	7 (100%)	0 (0.0%)
Fibrosis	0	4 (57.1%)	7 (100%)	1 (14.3%)	2 (28.6%)	7 (100%)
	1	3 (42.9%)	0 (0.0%)	6 (85.7%)	5 (71.4%)	0 (0.0%)
e-NOS	2	2 (28.6%)	0 (0.0%)	7 (100%)	0 (0.0%)	0 (0.0%)
	3	5 (71.4%)	7 (100%)	0 (0.0%)	7 (100%)	7 (100%)
e-selectine	2	2 (28.6%)	0 (0.0%)	2 (28.6%)	0 (0.0%)	0 (0.0%)
	3	5 (71.4%)	7 (100%)	5 (71.4%)	7 (100%)	7 (100%)
ICAM-1	1	1 (14.3%)	1 (14.3%)	0 (0.0%)	0 (0.0%)	1 (14.3%)
	2	5 (71.4%)	6 (85.7%)	4 (57.1%)	6 (85.7%)	6 (85.7%)
	3	1 (14.3%)	0 (0.0%)	3 (42.9%)	1 (14.3%)	0 (0.0%)


Table 1A: Histopathological and immunohistochemical results. *Scores that have zero percentage in all groups are not added.*

Abbreviations: C, control; 20T / 40T, 20/40-minute penile tourniquet; 20T&E / 40T&E, 20/40-minute penile tourniquet with continuous artificial erection

	Inflammation	Neovascularisation	Fibrosis	e-NOS	e-selectine	ICAM-1
	Raw p/Adj p	Raw p/Adj p	Raw p/Adj p	Raw p/Adj p	Raw p/Adj p	Raw p/Adj p
GC vs. G20T	0.599/1	<0.001/0.000*	0.107/1	0.228/1	0.098/0.977	0.569/1
GC vs. G20T&E	0.293/1	0.020/0.197	1/1	1/1	1/1	1/1
GC vs. G40T	<0.001/0.001*	<0.001/0.000*	0.001/0.013*	<0.001/0.000*	0.098/0.977	0.025/0.251
GC vs. G40T&E	0.115/1	<0.001/0.000*	0.007/0.72	1/1	1/1	0.270/1
G20T vs. G20T&E	0.599/1	0.080/0.802	0.107/1	0.228/1	0.098/0.977	0.569/1
G20T vs. G40T	<0.001/0.08*	1/1	0.107/1	0.003/0.26	1/1	0.095/0.946
G20T vs. G40T&E	0.293/1	1/1	0.282/1	0.228/1	0.098/0.977	0.594/1
G20T&E vs. G40T	0.005/0.047*	0.080/0.802	0.001/0.013*	<0.001/0.000*	0.098/0.977	0.025/0.251
G20T&E vs. G40T&E	0.599/1	0.080/0.802	0.007/0.72	1/1	1/1	0.270/1
G40T vs. G40T&E	0.021/0.21	1/1	0.591/1	<0.001/0.000*	0.098/0.977	0.255/1


Table 1B: Pairwise comparison of histopathological and immunohistochemical scores between study groups. Raw p-values and Bonferroni-adjusted p-values (Raw p/Adj p) are presented. Statistically significant differences (adjusted p < 0.05) are indicated with an asterisk (*). **Abbreviations:** **C**, control; **20T / 40T**, 20/40-minute penile tourniquet; **20T&E / 40T&E**, 20/40-minute penile tourniquet with continuous artificial erection

Journal Pre-proof

Journal Pre-proof

Figure Legends

Figure 1: **A)** dorsal view **B)** lateral view after PD +PT application. **C)** injection into proximal corpus cavernosum with 24-gauge butterfly needle to form AE.

Figure 2: **A-B)** continuous injection and pressure control system involving an infuser pump, two-way venous valve and 10cc syringe.

Figure 3: **A)** Mild lymphoplasmacytic cell infiltration (arrow) and neovascularization in G20T&E (H&E $\times 400$). **B)** Hemosiderin loaded macrophages (arrow) in G40T&E (H&E $\times 400$). **C)** Mild fibrosis in G40T (MTC $\times 200$). **D)** High-density immunopositivity (score 3) in G20T&E (ENOS $\times 200$). **E)** High-density immunopositivity (score 3) in G40T&E (ENOS $\times 200$). **F)** Moderate-density immunopositivity (score 2) in G40T (ENOS $\times 200$). **G)** High-density immunopositivity (score 3) in group C (e-selectine $\times 200$) **H)** Moderate-density immunopositivity (score 2) in 20T (e-selectine $\times 200$) **I)** High-density immunopositivity (score 3) in 40T&E (e-selectine $\times 200$) **J)** Moderate-density immunopositivity (score 2) in group C (ICAM-1 $\times 200$) **K)** Moderate-density immunopositivity (score 2) in 20T&E (ICAM-1 $\times 200$) **L)** High-density immunopositivity (score 3) in 40T (ICAM-1 $\times 200$)