

Neuroendoscopic Intervention in Posthemorrhagic Hydrocephalus : Feasibility and Outcomes

Yura Kim¹, Joo Hi Kim¹, Jeong Eun Shin¹, Hoseon Eun¹, Jungho Han¹, Min Soo Park¹, Seung Hwan Baek¹, Sumin Lee¹, Sungbo Shim¹, Yoonmi Jeong¹, Ching-yu Lin¹, Eun-Kyung Park², Kyu-Won Shim², Dong-Seok Kim²

Divison of Neonatology, Yonsei University Severance Children's Hospital¹, Department of Pediatric Neurosurgery, Yonsei University Severance Children's Hospital²

Abstract

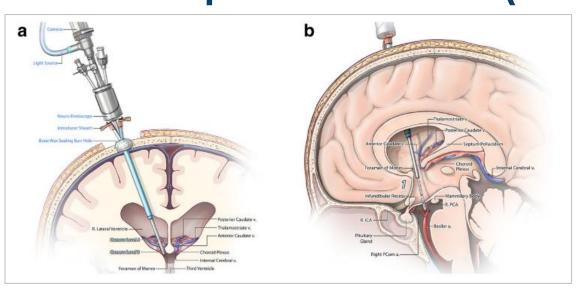
Backgroud:

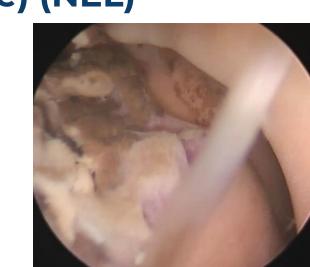
To evaluate the feasibility of active neuroendoscopic lavage (NEL) for posthemorrhagic hydrocephalus (PHH) in preterm infants and to assess associated clinical outcomes.

Methods:

Medical records of infants with PHH treated at Severance Children's Hospital between 1998 and 2023 were retrospectively reviewed. Patients were classified into two groups: active NEL (Group A) and conservative care (Group B). The presence of fibrinolysis therapy within Group A was also examined. Baseline demographics, surgical characteristics and shunt-related outcomes were compared.

Results:


Patients in Group A underwent VP-shunt placement at a later postnatal age and later postmenstrual age, compared to Group B. The duration of first EVD to VP-shunt was longer in group A than group B. In Group A, the fibrinolysis (+) subgroup underwent initial surgery earlier but received VP shunt placement at a comparable PMA to the non-fibrinolysis group. The VP-shunt-related complications were lower in group A than group B, while fibrinolysis therapy showed no significant difference.


Conclusion:

Active and early neuroendoscopic intervention improved PHH control and reduced infection rates, allowing delayed but safer shunt insertion with better growth. Larger, severity-matched cohorts and integrated brain MRI analysis are needed to further elucidate the long-term neurodevelopmental impact of early intervention.

Introduction

- Posthemorrhagic hydrocephalus (PHH) is a critical complication of high grade intraventricular hemorrhage (IVH) in preterm infants.
- Recently, the neuroendoscopic intervention (lavage) has been introduced as another promising treatment option.
- Neuroendoscopic intervention (lavage) (NEL)

- Minimal invasive surgery & direct removal of blood product in ventricle
- lower mortality & infection rates compared to conventional surgical methods.
- We aimed to evaluate the feasibility of active neuroendoscopic intervention as part of the treatment strategy for PHH.

Methods

- Retrospecitve cohort study
- Study population
 - Preterm infants born in January 1998 December 2023
 - Admitted in Severance Hospital NICU (Both Inborn & transferred patients)
 - Diagnosed with postnatal IVH with PHH
 - Underwent surgical intervention

• Comparison between groups:

- Active neuroendoscopic intervention (Group A) and conservative care (Group B)
- Presence of fibrinolysis therapy within Group A
- Following variables were compared:
 - Gestational age, birth weight, sex
 - Postnatal days at diagnosis of IVH, first operation and VP shunt
 - PMA at VP shunt
 - Frequency of operation, interval between first operation and VP shunt
 - VP shunt rate

Active neuroendoscopic intervention (Group A)

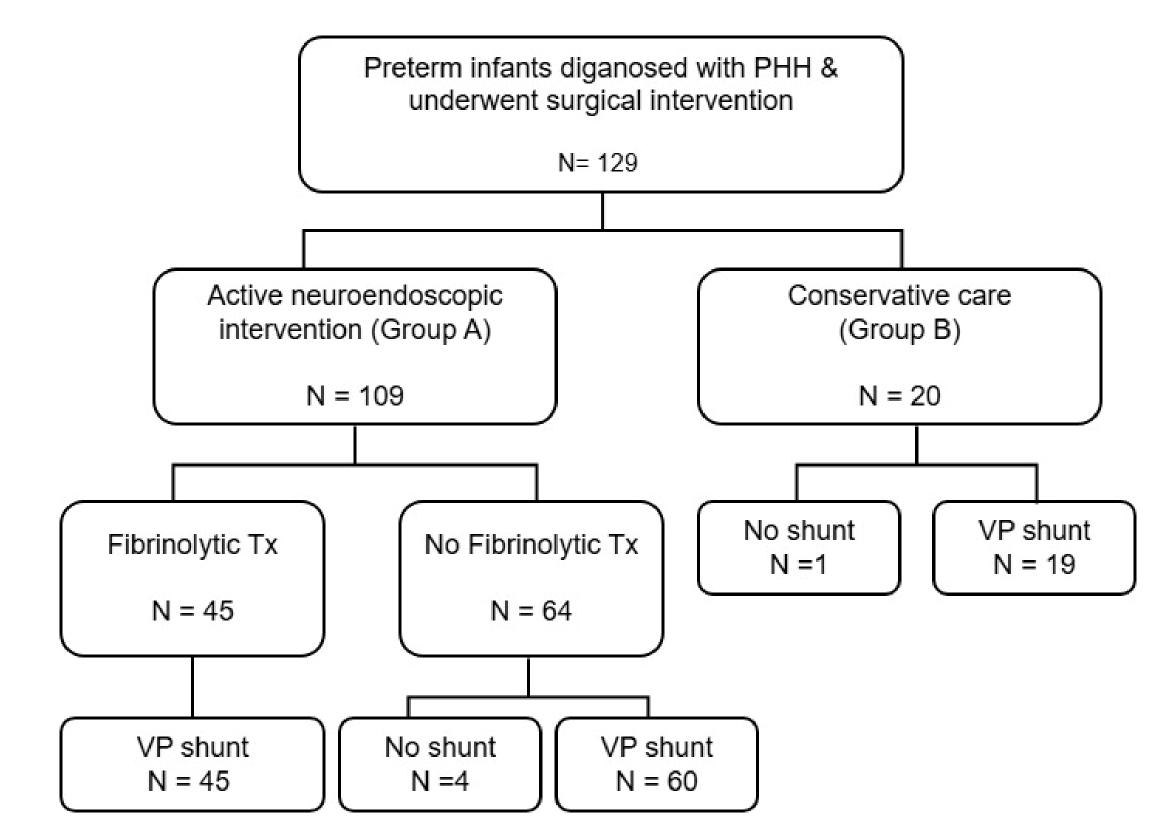
- 2008 2023
- Temporary treatment:
 - Bedside EVD insertion
 - Active neuroendoscopic lavage, 3-weeks interval
 - ± fibrinolytic therapy via EVD catheter (urokinase or tPA)
- Permanent treatment: VP shunt

Conservative care (Group B)

- 1998 early 2008
- Temporary treatment : Ventricular tapping or EVD
- Permanent treatment: V-P shunt
- Primary outcome: VP shunt- related complication rate
 - Shunt –related infection within 1 year
- Shunt revision within 1 year

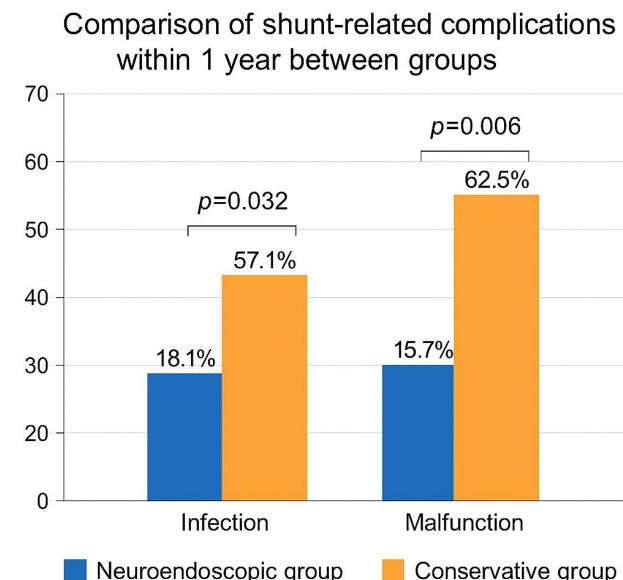
Statistical analysis

- SPSS Statistics for Windows, version 23.0 (SPSS Inc., Chicago, IL., USA)
- Continuous variables: Median and Interquartile range (IQR)
- Analysis
 - Mann-Whitney U for continuous variables
 - Chi-square test or Fisher's exact test for categorical variables
- Statistical significance: P < 0.05


Results

Baseline and Surgical Characteristics Between Group A & B

Values	Group A (N=109)	Group B (N=20)	P
Gestational age, week	27.4 [26.3–29.3]	29.2 [27.1–31.5]	0.018
Weight at birth, g	1037 [820–1397]	1275 [1012–1700]	0.056
Male, n (%)	60 (55)	10 (50)	0.808
Inborn, n(%)	16 (14.7)	17 (85)	<0.001
Postnatal days at diagnosis of IVH≥ GIII	7 [2-14]	9.5 [6.3-17.8]	0.046
Postnatal days at first operation	60 [30–89]	63 [30–88]	0.431
Frequency of operation	4 [2–5]	2 [1–3]	<0.001
Postnatal days at VP shunt, days	141 [109–171]	93 [70–110]	0.001
PMA at VP shunt, weeks	44.7 [41.4–52.6]	35.5 [32.0–41.0]	0.002
Interval b/w first op and VP shunt, days	79 [40–111]	22 [10–34]	<0.001


Baseline and Surgical Characteristics according to Fibrinolysis Tx

Values	Fibrinolysis (-) N=63 Fibrinolysis (+) N=45		Р
Gestational age, week	27.6 [26.3-30.1]	27.7 [25.5-30.0]	0.995
Weight at birth, g	1040 [860-1520]	1060 [775-1430]	0.691
Male, n (%)	31 (49.2)	18 (40)	0.383
Inborn, n(%)	9 (14.2)	7 (15.6)	0.828
Postnatal days at diagnosis of IVH≥ GIII	6 [3-14]	7 [3-11]	0.900
Postnatal days at first operation	62 [39-99]	55 [20-80]	0.044
Frequency of operation	4 [3-6]	6 [4.5-7]	0.019
Postnatal days at VP shunt, days	143 [109-179]	148 [123-184]	0.280
PMA at VP shunt, weeks	47.6 [44.8-52.6]	50.3 [46.0-53.9]	0.078
Interval b/w first op and VP shunt, days	66 [43-96]	96 [69-130]	0.002

Prevalence of VP shunt-related complications within 1 year

All VP shunt-received patients

Complication type	e Group A	Group B	p-value	OR (95% CI)			
Shunt Infection	19/105 (18.1)) 4/7 (57.1)	0.032	6.04 (1.25–29.22)			
Shunt revision	16/102 (15.7	7) 5/8 (62.5)	0.006	8.96 (1.94–41.27)			
Group A patients, fibrinolysis (+) vs. (-)							
Complication	Fibrinolysis	Fibrinolysis	p-value	OR (95% CI)			

Shunt Infection 8/60 (13.3) 11/45 (24.4) 0.200 2.10 (0.77–5.76)

0.37 (0.11–1.23)

0.108

12/57 (21.1) 4/45 (8.9)

Discussion

• Active and early neuroendoscopic intervention improved PHH control and reduced infection rates during the temporary management period, allowing delayed but safer shunt insertion with improved physical growth.

Shunt

malfunction

- By allowing shunt surgery after further maturation, this approach may help reduce shunt-related complications, leading to better overall outcomes.
- Further studies with larger, severity-matched cohorts and integrated brain MRI analysis are needed to better elucidate its long-term neurodevelopmental impact.

References

Luyt K, Jary SL, Lea CL, Young GJ, Odd DE, Miller HE, Kmita G, Williams C, Blair PS, Hollingworth W, Morgan M, Smith-Collins AP, Walker-Cox S, Aquilina K, Pople I, Whitelaw AG.
Drainage, irrigation and fibrinolytic therapy (DRIFT) for posthaemorrhagic ventricular dilatation: 10-year follow-up of a randomised controlled trial.

Arch Dis Child Fetal Neonatal Ed. 2020;105(5):466–473. doi:10.1136/archdischild-2019-318231.

Tirado-Caballero J, Rivero-Garvia M, Arteaga-Romero F, Herreria-Franco J, Lozano-Gonzalez Á, Marquez-Rivas J. Neuroendoscopic lavage for the management of posthemorrhagic hydrocephalus in preterm infants: safety, effectivity, and lessons learned. *J Neurosurg Pediatr*. 2020;26(3):237–246. doi:10.3171/2020.2.PEDS2037.

Dvalishvili A, Khinikadze M, Gegia G, Khutsishvili L. Neuroendoscopic lavage versus traditional surgical methods for the early management of posthemorrhagic hydrocephalus in neonates. *Childs Nerv Syst.* 2022;38(10):1897–1902. doi:10.1007/s00381-022-05606-4.

Park YS, Motoyama Y, Kotani Y, Nakase H, Kim TK, Yokota H, Sugimoto T, Nakagawa I. Efficacy and safety of intraventricular fibrinolytic therapy for post-intraventricular hemorrhagic hydrocephalus in extremely low birth weight infants: a preliminary clinical study. Childs Nerv Syst. 2020;36(10):2471–2479. doi:10.1007/s00381-020-04791-7.

Park EK, Kim JY, Kim DS, Shim KW. Temporary surgical management of intraventricular hemorrhage in premature infants. *J Korean Neurosurg Soc.* 2023 Mar 30. [Epub ahead of print] doi:10.3340/jkns.2022.0265.

Childs Nerv Syst. 2022;38(1):115-121. doi:10.1007/s00381-021-05373-8.

Honeyman SI, Boukas A, Jayamohan J, Magdum S.
Neuroendoscopic lavage for the management of neonatal post-haemorrhagic hydrocephalus: a retrospective series.