SEOUL NATIONAL UNIVERSITY CHILDREN'S HOSPITAL

Association of Human Milk Fortifier and Feeding Intolerance in Preterm Infants

JiHye Yoon¹, Ee-Kyung Kim^{1,2}, Seh Hyun Kim¹, Ju Sun Heo¹, Seung Han Shin^{1,2}, Han-Suk Kim^{1,2}

Division of Neonatology, Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea

Introduction

Use of human milk fortifier (HMF)

- Breastmilk alone cannot supply adequate nutrients and electrolytes to meet preterm infants' growth requirements.
- So, HMF is typically added to support growth for preterm infants.

Association of HMF and feeding intolerance (FI)

Empirically known that HMF can cause feeding intolerance symptoms as osmolarity increases.

Table 2. Feeding-related characteristics comparison between patients with and without FIF

	Feeding intolerance (-) N=129 (90.8%)	Feeding intolerance (+) N=13 (9.2%)	p-value
Timing of first fortifier administration (days)	18.8±12.19	14.5±4.81	0.016
Timing of first fortifier administration (PMA)	32.0±2.64	31.3±2.790	0.400

However, few studies have conducted quantitative analysis.

Therefore, this study aims to identify risk factors in vulnerable patients for adverse reactions to HMF based on clinical data.

Methods

Retrospective cohort study

- Single center (Neonatal intensive care unit at Seoul National University Children's Hospital)
- 2019.01 2020.12

Inclusion criteria

- Gestational age of less than 32 weeks
- Birth weight of less than 1500 grams
- Administered HMF

Feeding intolerance after fortification (FIF)

 Symptom : Clinically significant symptoms such as vomiting, regurgitation, abdominal distension or increased frequency of apnea which cannot be explained by other medical conditions.

Timing of reaching			
enteral feeding≥ 100mL/kg/D (days)	12.6±11.05	13.3±5.91	0.82

Duration of parenteral 12.7±11.60 15.6±9.05 0.376 Nutrition (days)

• Values are presented as number (%) or mean ± standard deviation

• PMA; Post-menstrual age, 100mL/kg/D; 100 ml per kg per day

Table 3. Clinical manifestations of FIF

Symptom	Ν
Vomiting	1
Regurgitation	1
Increase of residue	4
Increase of abdominal circumference	11
Increase of apnea alarm	4

- Allowing documentation of multiple symptoms from each patiens
- Values are presented as numbers

Table 4. Multivariable risk factor analysis for FIF

• Timing : within 7 days of HMF administration

Results

IVH

MOP

Table 1. Characteristics comparison between patients with and without feeding intolerance and without FIF

	Feeding intolerance (-)	Feeding intolerance (+)	p-value
	N=129 (90.8%)	N=13 (9.2%)	
Gestational age (weeks)	29.3±2.78	29.3±3.01	0.959
Body weight at birth (gram)	1155.7±324.5	1046.2±288.05	0.244
1 minute Apgar score	4.9±1.96	4.8±2.23	0.863
5 minute Apgar score	7.3±1.76	7.2±1.63	0.912
Small for gestational age	23 (17.8)	4 (30.8)	0.257
Male sex	74 (57.4)	9 (69.2)	0.408
Cesarean section	64 (49.6)	6 (46.2)	0.812
Multiple gestation	97 (75.2)	6 (46.2)	0.025
Prenatal factor			
Maternal hypertension	15 (11.6)	1 (7.7)	0.669
Chorioamnionitis	67 (51.9)	7 (53.8)	0.896
Oligohydramnios	18 (14.0)	3 (23.1)	0.377
Comorbidity			
BPD	52 (40.3)	7 (53.8)	0.345
ROP	32 (24.8)	3 (23.1)	0.89
PDA	58 (45)	7 (53.8) 0.54	
Sepsis	16 (12.4)	1 (7.7) 0.618	

	p-value	95% Confidence Interval
Gestational age (weeks)	0.497	0.718-1.981
Body weight at birth (gram)	0.087	0.991-1.001
Small for gestational age	0.660	0.038-7.935
Male sex	0.851	0.236-5.763
1 minute Apgar score	0.905	0.521-1.781
5 minute Apgar score	0.444	0.581-3.453
Cesarean delivery	0.816	0.173-3.986
Multiple gestation	0.040	0.048-0.935
Timing of reaching enteral feeding≥ 100mL/kg/D	0.031	0.614-0.977
Duration of parenteral nutrition (days)	0.007	1.090-1.742
Timing of first fortifier administration (days)	0.0023	0.712-0.975

Conclusion

- FI occurred in 9.2% of very low birth weight infants after HMF administration in our study.
- Multiple gestation, history of meconium obstruction of prematurity, and early HMF administration were statistically significant risk factors for FIF.

• Values are presented as number (%) or mean ± standard deviation

29 (22.5)

2 (1.6)

 BPD, Bronchopulmonary dysplasia; ROP, Retinopathy of prematurity; PDA, Patent ductus arteriosus; IVH, Intraventricular hemorrhage; MOP, Meconium obstruction of prematurity

5 (38.5)

2 (15.4)

 Earlier administration of HMF after birth was associated with FI. These findings ス = ス need to be replicated by other studies before generalization.

References

0.198

0.004

- 1) ZHANG, Ting, et al. Association of Human Milk Fortifier and Feeding Intolerance in Preterm Infants: A Cohort Study about Fortification Strategies in Southwest China. Nutrients, 2022, 14.21: 4610.
- 2) WEEKS, Charlotte L.; MARINO, Luise V.; JOHNSON, Mark J. A systematic review of the definitions and prevalence of feeding intolerance in preterm infants. Clinical nutrition, 2021, 40.11: 5576-5586.
- 3) CRESI, Francesco, et al. Effects on gastroesophageal reflux of donkey milkderived human milk fortifier versus standard fortifier in preterm newborns: Additional data from the fortilat study. Nutrients, 2020, 12.7: 2142.
- 4) BROWN, Jennifer Valeska Elli, et al. Multi-nutrient fortification of human milk for preterm infants. Cochrane Database of Systematic Reviews, 2020, 6.
- 5) JUNG, Young-Hwa, et al. The Physiologic Significance of Early Urinary Intestinal Fatty Acid Binding Protein Levels in Preterm Infants: A Prospective Cohort Study. Children, 2021, 8.10: 842.